1) The figure shows a system of two concentric spheres of radii r_{1} and r_{2} and kept at temperatures T_{1} and T_{2} respectively. The radial rate of flow of heat in a substance between the two concentric spheres is proportional to
(a) $\ln \left(r_{2} / r_{1}\right)$
(b) $\frac{r_{2}-r_{1}}{r_{1} r_{2}}$
(c) $r_{2}-r_{1}$
(d) $\frac{r_{1}-r_{2}}{r_{1} r_{2}}$

[AIEEE 2005]
2) If the temperature of the sun were to increase from T to $2 T$ and its radius from R to $2 R$, then the ratio of the radiant energy received on the earth to what it was previously, will be
(a) 4
(b) 16
(c) 32
(d) 64
[AIEEE 2004]
3) The temperatures of the two outer surfaces of a composite slab, consisting of two materials having coefficients of thermal conductivity K and $2 K$ and thickness x and $4 x$, respectively are T_{2} and $\mathrm{T}_{1}\left(\mathrm{~T}_{2}>\mathrm{T}_{1}\right)$. The rate of heat transfer through the slab, in a steady state, is $\frac{A\left(T_{2}-T_{1}\right)}{x} \times f$ with f equal to
(a) 1
(b) $1 / 2$
(c) $2 / 3$
(d) $1 / 3$
[AIEEE 2004]

4) According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta \theta)^{\mathrm{n}}$, where $\Delta \theta$ is the difference of the temperatures of the body and its surroundings and n is equal to
(a) one
(b) two
(c) three
(d) four
[AIEEE 2003]
5) The luminous intensity of a star is 8100 times that of the sun and its temperature is 4500 K . Assuming the surface temperature of the sun to be 6000 K , the ratio of radius of the star to that of the sun will be
(a) 1:160
(b) 1:320
(c) $160: 1$
(d) $320: 1$
[AIEEE 2002]
6) Two rods (one straight and other semicircular) of the same material and same cross-sectional area are joined as shown in the figure. The points A and B are maintained at different temperatures. The ratio of the heat transferred through the semicircular rod to the heat transferred through the straight rod in a given time is

(a) $2: \pi$
(b) 1:2
(c) $\pi: 2$
(d) $3: 2$
[AIEEE 2002]
7) A body with area A and temperature T and emissivity $e=0.6$ is kept inside a spherical black body. What will be the maximum energy radiated ?
(a) $0.60 \sigma \mathrm{AT}^{4}$
(b) $0.80 \sigma \mathrm{AT}^{4}$
(c) $1.00 \sigma \mathrm{AT}^{4}$
(d) $0.40 \sigma \mathrm{AT}^{4}$
[IIT 2005]
8) In which of the following processes, heat loss is primarily NOT due to convection?
(a) boiling of water (b) land and sea breeze
(c) heating of glass surface of a bulb due to current in filament
(d) circulation of air around blast furnace
[IIT 2005]
9) One calorie is defined as heat required for rise of temperature by $1^{\circ} \mathrm{C}$ of one gram of water at which of the following specific conditions ?
(a) 98.5 to $99.5^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$
(b) 3.5 to $4.5^{\circ} \mathrm{C}, 76 \mathrm{~mm}$ of Hg
(c) 13.5 to $14.5^{\circ} \mathrm{C}, 76 \mathrm{~mm} \mathrm{Hg}$
(d) 14.5 to $15.5^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$
[IIT 2005]

10) Variation of radiant energy emitted by sun, filament of tungsten lamp and welding arc as a function of its wavelength is shown in the figure. Which of the following options is the correct match ?
(a) Sun- T_{1}, tungsten filament $-\mathrm{T}_{2}$, welding arc $-\mathrm{T}_{3}$
(b) Sun- T_{2}, tungsten filament $-\mathrm{T}_{2}$, welding arc $-\mathrm{T}_{1}$
(c) Sun- T_{3}, tungsten filament $-\mathrm{T}_{2}$, welding arc $-\mathrm{T}_{1}$
(d) Sun- T_{1}, tungsten filament $-T_{3}$, welding arc $-T_{2}$
[IIT 2005]

11) Two identical conducting rods are first connected independently to two vessels, one containing water at $100^{\circ} \mathrm{C}$ and the other containing ice at $0^{\circ} \mathrm{C}$. In the second case, the rods are joined end to end and connected to the same vessels. Let q_{1} and $q_{2} \mathrm{~g} / \mathrm{s}$ be the rate of melting of ice in the two cases respectively. The ratio q_{1} / q_{2} is
(a) $1: 2$
(b) 2:1
(c) 4 :
(d) $1: 4$
[IIT 2004]
12) Three discs, AB and C having radii $2 \mathrm{~m}, 4 \mathrm{~m}$ and 6 m respectively are coated with carbon black on their outer surfaces. The wavelengths corresponding to maximum intensity are $300 \mathrm{~nm}, 400 \mathrm{~nm}$ and 500 nm respectively. If the power radiated by them are Q_{A}, Q_{B} and Q_{C} respectively, then
(a) Q_{A} is maximum
(b) Q_{B} is maximum
(c) Q_{c} is maximum
(d) $\mathbf{Q}_{\mathbf{A}}=\mathbf{Q}_{\mathbf{B}}=\mathbf{Q}_{\mathbf{C}}$
[IIT 2004]
13) The graph, shown in the adjacent diagram, represents the variation of temperature (T) of two bodies, x and y having same surface area, with time (t) due to the emission of radiation. Find the correct relation between the emissivity and absorptivity power of the two bodies.
(a) $E_{x}>E_{y}$ and $a_{x}<a_{y}$
(b) $\mathrm{E}_{\mathrm{x}}<\mathrm{E}_{\mathrm{y}}$ and $\mathrm{a}_{\mathrm{x}}>\mathrm{a}_{\mathrm{y}}$
(c) $E_{x}>E_{y}$ and $a_{x}>a_{y}$
(d) $\mathrm{E}_{\mathrm{x}}<\mathrm{E}_{\mathrm{y}}$ and $\mathrm{a}_{\mathrm{x}}<\mathrm{a}_{\mathrm{y}}$
[IIT 2003]

$14) 2 \mathrm{~kg}$ of ice at $-20^{\circ} \mathrm{C}$ is mixed with 5 kg of water at $20^{\circ} \mathrm{C}$ in an insulating vessel having a negligible heat capacity. Calculate the final mass of water remaining in the container. It is given that the specific of water and ice are $1 \mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ and $0.5 \mathrm{kcal} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ while the latent heat of fusion of ice is $80 \mathrm{Kcal} / \mathrm{kg}$:
(a) 7 kg
(b) 6 kg
(c) 4 kg
(d) 2 kg
[IIT 2003]
15) An ideal black-body at room temperature is thrown into a furnace. It is observed that
(a) initially it is the darkest body and at later times the brightest.
(b) it is the darkest body at all times.
(c) it cannot be distinguished at all times.
(d) initially it is the darkest body and at later times it cannot be distinguished.

16) Three rods made of the same material and having the same cross-section have been joined as shown in the figure. Each rod is of the same length. The left and right ends are kept at $0^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ respectively. The temperature of the junction of the three rods will be
(a) $45^{\circ} \mathrm{C}$
(b) $60^{\circ} \mathrm{C}$
(c) $30^{\circ} \mathrm{C}$
(d) $20^{\circ} \mathrm{C}$
[IIT 2001]
17) The plots of intensity versus wavelength for three black bodies at temperatures $\mathrm{T}_{1}, \mathrm{~T}_{2}$ and T_{3} respectively are as shown. Their temperatures are such that
(a) $\mathrm{T}_{1}>\mathrm{T}_{2}>\mathrm{T}_{3}$
(b) $\mathrm{T}_{1}>\mathrm{T}_{3}>\mathrm{T}_{2}$
(c) $\mathrm{T}_{2}>\mathrm{T}_{3}>\mathrm{T}_{1}$
(d) $\mathrm{T}_{3}>\mathrm{T}_{2}>\mathrm{T}_{1}$
[IIT 2000]
18) A block of ice at $-10^{\circ} \mathrm{C}$ is slowly heated and converted into steam at $100^{\circ} \mathrm{C}$. Which of the following curves represents the phenomena qualitatively?
[IIT 2000]

19) A bimetallic strip is formed out of two identical strips - one f copper and the other of brass. The coefficients of linear expansion of the two metals are α_{C} and α_{B}. On heating, the temperature of the strip goes up by ΔT and the strip bends to form an arc of radius of curvature \mathbf{R}. Then, \mathbf{R} is
(a) proportional to ΔT
(b) inversely proportional to $\Delta \mathrm{T}$
(c) proportional to $I \alpha_{B}-\alpha_{C} I$
(d) inversely proportional to $I \alpha_{B}-\alpha_{C} I$
[IIT 1999]
20) A black body is at a temperature of 2880 K . The energy of radiation emitted by this object with wavelength between 499 nm and 500 nm is U_{1}, between 999 nm and 1000 nm is U_{2} and between 1499 nm and 1500 nm is U_{3}. The Wein constant, $\mathrm{b}=2.88 \times 10^{6}$ $n m-K$. Then
(a) $\mathrm{U}_{1}=0$
(b) $U_{3}=0$
(c) $\mathrm{U}_{1}>\mathrm{U}_{2}$
(d) $\mathrm{U}_{2}>\mathrm{U}_{1}$
[IIT 1998]
21) A spherical black body with a radius of 12 cm radiates 450 W power at 500 K . If the radius were halved and the temperature doubled, the power radiated in watt would be $\begin{array}{llll}\text { (a) } 225 & \text { (b) } 450 & \text { (c) } 900 & \text { (d) } 1800\end{array}$

22) Two bodies A and B have thermal emissivities of 0.01 and 0.81 respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power at the same rate. The wavelength λ_{B} corresponding to maximum spectral radiancy in the radiation from B is shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A, by $1.0 \mu \mathrm{~m}$. If the temperature of A is 5802 K
(a) the temperature of B is $1934 \mathrm{~K} \quad$ (b) $\lambda_{B}=1.5 \mu \mathrm{~m}$
(c) the temperature of B is 11604 K (d) the temperature of B is 2901
[IIT 1994]
23) Two rods of different materials having coefficients of thermal expansion a_{1}, a_{2} and Young's moduli $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ respectively are fixed between two rigid massive walls. The rods are heated such that undergo the same increase in temperature. There is no bending of the rods. If $a_{1}: a_{2}=2: 3$, the thermal stresses developed in the two rods are equal provided $Y_{1}: Y_{2}$ is equal to
(a) 2: 3
(b) $1: 1$
(c) $3: 2$
(d) 4:
[IIT 1989]
24) A cylinder of radius R made of a material of thermal conductivity K_{1} is surrounded by a cylindrical shell of inner radius R and outer radius $2 R$ made of a material of thermal conductivity K_{2}. The two ends of the combined system are maintained at two different temperatures. There is no loss of heat across the cylindrical surface and the system is in steady state. The effective thermal conductivity of the system is
(a) $K_{1}+K_{2}$
(b) $K_{1} K_{2} /\left(K_{1}+K_{2}\right)$
(c) $\left(K_{1}+3 K_{2}\right) / 4$
(d) $\left(3 K_{1}+K_{2}\right) / 4$
[IIT 1988]
25) Steam at $100^{\circ} \mathrm{C}$ is passed into 1.1 kg of water contained in a calorimeter of water equivalent 0.02 kg at $15^{\circ} \mathrm{C}$ till the temperature of the calorimeter and its contents rise to $80^{\circ} \mathrm{C}$. The mass of the steam condensed in kilogram is
(a) 0.130
(b) 0.065
(c) 0.260
(d) 0.195
[IIT 1986]
26) A constant volume gas thermometer works on
(a) the principle of Archimedes
(b) Pascal's law
(c) Boyle's law
(d) Charles' law
[IIT 1980]
27) A wall has two layers A and B, each made of a different material. Both the layers have the same thickness. The thermal conductivity of the material of A is twice that of B. Under thermal equilibrium, the temperature difference across the wall is $36^{\circ} \mathrm{C}$. The temperature difference across the layer A is
(a) $6^{\circ} \mathrm{C}$
(b) $12^{\circ} \mathrm{C}$
(c) $18^{\circ} \mathrm{C}$
(d) $24^{\circ} \mathrm{C}$
[IIT 1980]
28) A metal ball immersed in alcohol weighs W_{1} at $0^{\circ} \mathrm{C}$ and W_{2} at $50^{\circ} \mathrm{C}$. The coefficient of cubical expansion of the metal is less than that of the alcohol. Assuming that the density of the metal is large compared to that of alcohol, it can be shown that
(a) $\mathrm{W}_{1}>\mathrm{W}_{2}$
(b) $\mathrm{W}_{1}=\mathrm{W}_{2}$
(c) $\mathrm{W}_{1}<\mathrm{W}_{2}$
[IIT 1980]
29) Ice starts forming in a lake with water at $0^{\circ} \mathrm{C}$ when the atmospheric temperature is $-10^{\circ} \mathrm{C}$. If the time taken for 1 cm of ice to be formed is $\mathbf{7}$ hours, the time taken for the thickness of ice to change from 1 cm to 2 cm is
(a) 7 hr
(b) $<7 \mathrm{hr}$
(c) $>14 \mathrm{hr} \quad(\mathrm{d})>7 \mathrm{hr}$ but $<14 \mathrm{hr}$
[NCERT 1971]
30) The temperature of a piece of metal is raised from $27^{\circ} \mathrm{C}$ to $51.2^{\circ} \mathrm{C}$. The rate at which metal radiates energy increases nearly
(a) 2 times
(b) 1.36 times
(c) 2.72 times
(d) 4 times
31) A body takes 4 minutes to cool from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. If the room temperature is $15^{\circ} \mathrm{C}$, the time taken to cool from $70^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ will be
(a) 7 minutes
(b) 6 minutes
(c) 5 minutes
(d) 2 minutes
32) With cold wind keeping the surface at $-20^{\circ} \mathrm{C}$, a layer of ice on a pond grows in thickness from 20 mm to 21 mm in 10 min . Later with the surface at the same temperature, it will grow from 40 mm to 42 mm in approximately
(a) 10 min .
(b) 10.2 min .
(c) 20 min .
(d) 40 min .
33) Two solid spheres of radii \mathbf{R}_{1} and \mathbf{R}_{2} are made of the same material and have similar surfaces. The spheres are raised to the same temperature and then allowed to cool under identical conditions. Assuming spheres to be perfect conductors of heat, their ratio of initial rate of heat loss is
(a) $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
(b) $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
(c) $\frac{R_{2}}{R_{1}}$ (d) $\left(\frac{R_{2}}{R_{1}}\right)^{2}$

34) In the above question, the ratio of the initial rates of cooling is
(a) $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
(b) $\frac{R_{1}}{R_{2}}$
(c) $\frac{R_{2}}{R_{1}}$
(d) $\left(\frac{R_{2}}{R_{1}}\right)^{2}$
35) Two bodies A and B are placed in an evacuated vessel maintained at a temperature of $27^{\circ} \mathrm{C}$. The temperature of A is $327^{\circ} \mathrm{C}$ and that of B is $227^{\circ} \mathrm{C}$. The ratio of heat losses from A to B is about
(a) $2: 1$
(b) $1: 2$
(c) $4: 1$
(d) 1:4

Answers

12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	d	
21 22	23	24	25	26	27	28	29	30	31	32	33	34	35						
d a,b	c	c	a	d	b	b	c	b	a	d	a	c	a						

