13 - VECTOR ALGEBRA

(Answers at the end of all questions)

- (1) If C is the midpoint of AB and P is any point outside AB, then

AIEEE 2005]

- (2) For any vector \overrightarrow{a} , the value of $(\overrightarrow{a} \times \overrightarrow{i})^2 + (\overrightarrow{a} \times \overrightarrow{k})^2$ is equal to
 - (a) $3\vec{a}^2$ (b) \vec{a}^2 (c) $2\vec{a}^2$ (d) $4\vec{a}^2$

[AIEEE 2005]

- (3) Let a, b and c be distinct non-negative numbers. If the vectors ai + aj + k, i + k and ci + cj + bk lie in a plane, then c is
 - (a) the Geometric Mean of a and b (b) the Arithmetic Mean of a and b
 - (c) equal to zero

(d) the Harmonic Mean of a and b

[AIEEE 2005]

- (4) If a, b, c are non-coplanar vectors and λ is a real number, then $\lambda (\overrightarrow{a} + \overrightarrow{b}) \cdot [\lambda^2 \overrightarrow{b} \times \lambda \overrightarrow{c}] = \overrightarrow{a} \cdot [(\overrightarrow{b} + \overrightarrow{c}) \times \overrightarrow{b}]$ for
 - (a) exactly one value of λ (b) no value of λ
 - (c) exactly three values of λ (d) exactly two values of λ [AIEEE 2005]

a = i - k, b = xi + j + (1 - x)k and c = yi + xj + (1 + x - y)k.

 $\rightarrow \rightarrow \rightarrow \rightarrow$ Then [a b c] depends on

(a) only y (b) only x (c) both x and y (d) neither x nor y [AIEEE 2005]

- (6) Let a, b, c, be three non-zero vectors such that no two of these are collinear. If the vector \overline{a} + 2 \overline{b} is collinear with \overline{c} , and \overline{b} + 3 \overline{c} is collinear with \overline{a} , then a + 2b + 6c, for some non-zero scalar λ equals
 - (a) $\lambda \overline{a}$ (b) $\lambda \overline{b}$ (c) $\lambda \overline{c}$ (d) 0

[AIEEE 2004]

- (7) A particle is acted upon by constant forces 4i + j 3k and 3i + j k which displace it from a point i + 2 j + 3k to the point 5 i + 4 j + k. The work done in standard units by the forces is given by

- (a) 40 (b) 30 (c) 25 (d) 15

[AIEEE 2004]

- (8) If a, b, c are non-coplanar vectors and λ is a real number, then the vectors $\overline{a} + 2\overline{b} + 3\overline{c}$, $\lambda \overline{b} + 4\overline{c}$ and $(2\lambda - 1)\overline{c}$ are non-coplanar for
 - (a) all values of λ
- (b) all except one value of λ
- (c) all except two values of λ (d) no value of \mathbb{R}

[AIEEE 2004]

- (9) Let u, v, \overline{w} be such that $|\overline{u}| = 1$, $|\overline{v}| = 2$ and $|\overline{w}| = 3$. If the projection of \overline{v} along \bar{u} is equal to that of \bar{w} along \bar{u} and \bar{v} , \bar{w} are perpendicular to each other, then $\overline{lu} - \overline{v} + \overline{w} \overline{l}$ equals

 - (a) 2 (b) $\sqrt{7}$
- (d) 14

[AIEEE 2004]

- (10) Let \bar{a} , \bar{b} , \bar{c} be non-zero vectors such that $(\bar{a} \times \bar{b}) \times \bar{c} = \frac{1}{2} |\bar{b}||\bar{c}||\bar{a}|$. If θ is the acute angle between the vectors b and c, then $\sin \theta$ equals
- (b) $\sqrt{\frac{2}{3}}$ (c) $\frac{2}{3}$ (d) $\frac{2\sqrt{2}}{3}$

[AIEEE 2004]

 a^{2} 1 + a^{2} b^{2} 1 + b^{2} = 0 and vectors (1, a, a^{2}), (1, b, b^{2}) and (1, c, c^{2}) are

non-coplanar, then the product abc equals

- (a) 2
- (b) -1 (c) 1 (d) 0

[AIEEE 2003 1

- $b \cdot c + c \cdot a$ is equal to
 - (a) 0 (b) -7 (c) 7 (d) 1

[AIEEE 2003]

- (13) A particle acted on by constant forces 4i + j 3k and 3i + j k is displaced from the point 5 i + 4 j + k. The total work done by the forces is (a) 20 units (b) 30 units (c) 40 units (d) 50 units
- \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} are three non-coplanar vectors, then $\rightarrow \rightarrow (u + v - w)$. $(u - v) \times (v - w)$ equals
 - (a) 0 (b) $\vec{u} \cdot \vec{v} \times \vec{w}$ (c) $\vec{u} \cdot \vec{w} \times \vec{v}$

[AIEEE 2003]

- (15) The vectors $\overrightarrow{AB} = 3\overrightarrow{i} + 4\overrightarrow{k}$ and $\overrightarrow{AC} = 5\overrightarrow{i} + 2\overrightarrow{j} + 4\overrightarrow{k}$ are the sides of a triangle ABC. The length of a median through
 - (a) $\sqrt{18}$ (b) $\sqrt{72}$ (c) $\sqrt{33}$ (d) $\sqrt{288}$

[AIEEE 2003]

- (16) Consider points A, B, C and D with position vectors 7i 4j + 7k. \overrightarrow{i} - $\overrightarrow{6}$ \overrightarrow{j} + 10 \overrightarrow{k} , - \overrightarrow{i} - $\overrightarrow{3}$ \overrightarrow{j} + 4 \overrightarrow{k} and 5 \overrightarrow{i} - \overrightarrow{j} + 5 \overrightarrow{k} respectively. Then ABCD is a (a) square (b) rhombus (c) rectangle (d) parallelogram [AIEEE 2003]
- \overrightarrow{v} = \overrightarrow{i} \overrightarrow{j} and \overrightarrow{w} = \overrightarrow{i} + $2\overrightarrow{j}$ + $3\overrightarrow{k}$. If \overrightarrow{n} is a unit vector such that $\overrightarrow{u} \cdot \overrightarrow{n} = 0$ and $\overrightarrow{v} \cdot \overrightarrow{n} = 0$, then $\overrightarrow{w} \cdot \overrightarrow{n}$ (a) 0 (b) 1 (c) 2 (d) 3 [AIEEE 2003]
- (18) The angle between any two diagonals of a cube is

- (a) 45° (b) 60° (c) 90° (d) $\tan^{-1} 2\sqrt{2}$

[AIEEE 2003]

- (19) If vector $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} \overrightarrow{k}$; $\overrightarrow{b} = \overrightarrow{i} \overrightarrow{j} + \overrightarrow{k}$ and $\overrightarrow{c} = \overrightarrow{i} \overrightarrow{j} \overrightarrow{k}$, then the value of $a \times (b \times c)$ is
 - $(a) \overrightarrow{i} \overrightarrow{j} + \overrightarrow{k} \qquad (b) 2\overrightarrow{i} 2\overrightarrow{j}$
 - (c) $\overrightarrow{3}i \overrightarrow{j} + \overrightarrow{k}$ (d) $\overrightarrow{2}i + 2 \overrightarrow{j} \overrightarrow{k}$

[AIEEE 2002]

(20) If a = i + j - 2k; b = -i + 2j + k and c = i - 2j + 2k, then a unit vector parallel to a + b + c is

(a)
$$\frac{\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$

(a)
$$\frac{\overrightarrow{j} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$
 (b) $\frac{\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}}{\sqrt{6}}$

(c)
$$\frac{\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$

(c)
$$\frac{\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}}{\sqrt{3}}$$
 (d) $\frac{2\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}}{\sqrt{6}}$

(21) If $\overrightarrow{a} = 2\overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ and $\overrightarrow{b} = 5\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}$, the orthogonal projection of \overrightarrow{a}

(a)
$$5\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}$$

(b)
$$9(5i - 3j + k)$$

(c)
$$\frac{5 \stackrel{\rightarrow}{i} - 3 \stackrel{\rightarrow}{j} + \stackrel{\rightarrow}{k}}{35}$$

(a)
$$5\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}$$
 (b) $9(5\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k})$
(c) $\frac{5\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k}}{35}$ (d) $\frac{9(5\overrightarrow{i} - 3\overrightarrow{j} + \overrightarrow{k})}{35}$

[AIEEE 2002]

(22) If the angle between two vectors \overrightarrow{i} + \overrightarrow{k} and \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{a} \overrightarrow{k} is $\frac{\pi}{3}$, then the value of a is (a) 2 (b) 4 (c) -2 (d) 0

[AIEEE 2002]

(23) If $\overrightarrow{a} = \overrightarrow{i} + 2 \overrightarrow{j} + 3 \overrightarrow{k}$ and $\overrightarrow{b} = 3 \overrightarrow{i} - \overrightarrow{j} + 2 \overrightarrow{k}$, then angle between $(\overrightarrow{a} + \overrightarrow{b})$ and

(a) 0° (b) 30° (c) 60° (d) 90°

[AIEEE 2002]

value of sine of the angle between the vectors \vec{i} - 2 \vec{j} + 3 \vec{k} and 2 \vec{i} + \vec{j} + \vec{k}

(b)
$$\frac{5}{\sqrt{7}}$$

(c)
$$\frac{5}{\sqrt{14}}$$

(a)
$$\frac{5}{21}$$
 (b) $\frac{5}{\sqrt{7}}$ (c) $\frac{5}{\sqrt{14}}$ (d) $\frac{5}{2\sqrt{7}}$

[AIEEE 2002]

(25) If vectors a i + j + k, i + b j + k and i + j + c k are coplanar, then

(a)
$$a + b + c = 0$$

(b)
$$abc = -1$$

(c)
$$a + b + c = abc + 2$$
 (d) $ab + bc + ca = 0$

(d)
$$ab + bc + ca = 0$$

[AIEEE 2002]

(26) If a, b, c are three non-zero, noncoplanar vectors and $b_1 = \overrightarrow{b} - \overrightarrow{b \cdot a} \xrightarrow{a} \overrightarrow{a}$,

$$\overrightarrow{b}_{2} = \overrightarrow{b} + \frac{\overrightarrow{b} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^{2}} \overrightarrow{a}, \qquad \overrightarrow{c}_{1} = \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^{2}} \overrightarrow{a} - \frac{\overrightarrow{c} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^{2}} \overrightarrow{b},$$

$$\overrightarrow{c_2} = \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2} \overrightarrow{a} - \frac{\overrightarrow{c} \cdot \overrightarrow{b_1}}{|\overrightarrow{b_1}|^2} \overrightarrow{b_1}, \quad \text{and} \quad \overrightarrow{c_3} = \overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{|\overrightarrow{a}|^2} \overrightarrow{a} - \frac{\overrightarrow{c} \cdot \overrightarrow{b_2}}{|\overrightarrow{b_2}|^2} \overrightarrow{b_2},$$

then the set of orthogonal vectors is

- (a) $(a, b_1 c_1)$ (b) $(a, b_1 c_2)$ (c) $(a, b_1 c_3)$ (d) $(a, b_2 c_2)$

[IIT 2005]

- (27) If a = i + j + k, $a \cdot b = 1$ and $a \times b = j k$, then b is equal to

 - (a) 2i (b) i j + k (c) i (d) 2j k

[IIT 2004]

- (28) A unit vector is orthogonal to 5i + 2j + 6k and is coplanar to 2i + j + k and \hat{i} - \hat{j} + \hat{k} , then the vector is
 - (a) $\frac{3j-k}{\sqrt{10}}$ (b) $\frac{2i+5j}{\sqrt{29}}$ (c) $\frac{6i-5k}{\sqrt{61}}$ (d) $\frac{2i+2j-k}{3}$

[IIT 2004]

- (29) The value of a so that the volume of parallelopiped formed by vectors i + a j + k ak and ai + k becomes minimum is
- (a) $\sqrt{3}$ (b) 2 (c) $\frac{1}{\sqrt{3}}$ (d) 3

[IIT 2003]

- are two unit vectors such that a + 2b(30) If perpendicular to each other, then the angle between a and b is
- (a) 45° (b) 60° (c) $\cos^{-1} \frac{1}{3}$ (d) $\cos^{-1} \frac{2}{7}$

[IIT 2002]

- (31) If V = 2i + j k, W = i + 3k and U is a unit vector, then the maximum value of the scalar triple product [U V W] is

 - (a) -1 (b) $\sqrt{10} + \sqrt{6}$ (c) $\sqrt{59}$ (d) $\sqrt{60}$

[IIT 2002 1

- (32) If a, b and c are unit vectors, then $\begin{vmatrix} a \\ b \end{vmatrix}^2 + \begin{vmatrix} b \\ c \end{vmatrix}^2$ does not exceed

 - (a) 4 (b) 9 (c) 8 (d) 6

[IIT 2001]

- j + (1 x)k and c = yi + xj + (1 + x y)kthen [a b c] depends on
 - (a) only x (b) only y (a) neither x nor y (d) both x and y [IIT 2001]

- (34) Let the vectors a, b, c and d be such that $(a \times b) \times (c \times d) = 0$. Let P_1 and P_2 be planes determined by the pairs of vectors a, b and c, d respectively, then the angle between P₁ and P₂ is
 - (a) 0

- (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

[IIT 2000]

- (35) If a, and c are unit coplanar vectors, then the scalar triple product 2a - b, 2b - c, 2c - a = 1
- (b) 1 (c) $-\sqrt{3}$ (d) $\sqrt{3}$

[IIT 2000]

- (36) If the vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} form the sides \overrightarrow{BC} , \overrightarrow{CA} and \overrightarrow{AB} of a triangle ABC, then

- (d) $a \times b + b \times c \times a = 0$

[IIT 2000]

- (37) Let $\overrightarrow{a} = 2\overrightarrow{i} + \overrightarrow{j} 2\overrightarrow{k}$ and $\overrightarrow{b} = \overrightarrow{i} + \overrightarrow{j}$. If \overrightarrow{c} is a vector $\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{c}|, |\overrightarrow{c} - \overrightarrow{a}| = 2\sqrt{2}$ and the angle between $(\overrightarrow{a} \times \overrightarrow{b})$ and is 30°, $(a \times b) \times c =$
 - (a) $\frac{2}{3}$ (b) $\frac{3}{2}$ (c) 2 (d) 3

TIT 1999 1

- is perpendicular to \vec{a} , then \vec{c} =
 - (a) $\frac{1}{\sqrt{2}}(-\dot{j} + \dot{k})$ (b) $\frac{1}{\sqrt{3}}(-\dot{i} \dot{j} \dot{k})$
 - (c) $\frac{1}{\sqrt{5}}(\hat{i} 2\hat{j})$ (d) $\frac{1}{\sqrt{3}}(\hat{i} \hat{j})$

[IIT 1999]

- (39) Let \overrightarrow{a} and \overrightarrow{b} be two non-collinear unit vectors. If $\overrightarrow{u} = \overrightarrow{a} (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{b}$ and $\overrightarrow{v} = \overrightarrow{a} \times \overrightarrow{b}$, then \overrightarrow{v} is
 - [IIT 1999]
- and are linearly dependent vectors and $|\vec{c}| = \sqrt{3}$, then α and β respectively are (a) 1, -1 (b) 1, ± 1 (c) -1, ± 1 (d) ± 1 , 1 [IIT 1998]
- For three vectors \overrightarrow{u} , \overrightarrow{v} \overrightarrow{w} which of the following expressions is not equal to any of the remaining three?
 - (a) $\overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$ (b) $(\overrightarrow{v} \times \overrightarrow{w}) \cdot \overrightarrow{u}$ (c) $\overrightarrow{v} \cdot (\overrightarrow{u} \times \overrightarrow{w})$ (d) $(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}$ [IIT 1998]
- (42) Which of the following expressions are meaningful questions?
 - (a) $\overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})$ (b) $(\overrightarrow{u} \cdot \overrightarrow{v}) \cdot \overrightarrow{w}$ (c) $(\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}$ (d) $\overrightarrow{u} \times (\overrightarrow{v} \cdot \overrightarrow{w})$ [IIT 1998]

(43) Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies the equation

 $p \times [(x-q) \times p] + q \times [(x-r) \times q] + r \times [(x-p) \times r] = 0$, then x is given by

(a)
$$\frac{1}{2}(p+q-2r)$$
 (b) $\frac{1}{2}(p+q+r)$

(b)
$$\frac{1}{2}$$
(p + q + r)

(c)
$$\frac{1}{3}$$
(p + q + r)

(c)
$$\frac{1}{3}(p+q+r)$$
 (d) $\frac{1}{3}(2p+q-r)$

[IIT 1997]

(44) Let $\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{j}$, $\overrightarrow{b} = \overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{c} = \overrightarrow{k} - \overrightarrow{i}$. If \overrightarrow{d} is a unit vector such that $\overrightarrow{a} \cdot \overrightarrow{d} = 0 = [\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}], \text{ then } \overrightarrow{d} \text{ equals}$

$$(a) \pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$$

(a)
$$\pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$$
 (b) $\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$ (c) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ (d) $\pm \hat{k}$

$$\frac{\hat{j} + \hat{j} + \hat{k}}{\sqrt{3}}$$

(45) Let u, v and w be vectors such that v + v + w = 0. If |u| = 3, |v| = 4and $| \overrightarrow{w} | = 5$, then the value of $\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}$

[IIT 1995]

(46) If \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} are three non-coplanar vectors, then

$$(\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}) \cdot (\overrightarrow{A} + \overrightarrow{B}) \times (\overrightarrow{A} + \overrightarrow{C})$$
 equals

$$\rightarrow \rightarrow \rightarrow \rightarrow$$

b) [A, B, C

(c)
$$2 [A, B, C]$$

(a) 0 (b)
$$[\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}]$$
 (c) $2[\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}]$ (d) $-[\overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}]$ [IIT 1995]

(47) If \overrightarrow{a} \overrightarrow{b} , \overrightarrow{c} are non-coplanar unit vectors such that $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \frac{\overrightarrow{b} \times \overrightarrow{c}}{\sqrt{2}}$, then the

angle between \overrightarrow{a} and \overrightarrow{b} is

(a)
$$\frac{3\pi}{4}$$
 (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{2}$$

[IIT 1995]

(48) Let a, b, c be distinct non-negative numbers. If the vectors a i + a j + c k, i + k and ci + cj + bk lie in a plane, then c is

(a) AM of a and b (b) GM of a and b (c) HM of a and b (d) 0 [IIT 1993]

(49) Let
$$\overrightarrow{a} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$$
, $\overrightarrow{b} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$ and $\overrightarrow{c} = \overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$ be three vectors.

A vector in the plane of \overrightarrow{b} and \overrightarrow{c} whose projection on \overrightarrow{a} is of magnitude $\sqrt{\frac{2}{3}}$ is

(a)
$$2i + j - 3k$$
 (b) $2i + 3j + 3k$

[IIT 1993]

(50) If a, b, c be three non-coplanar vectors and are vectors defined by the relations $\stackrel{\rightarrow}{p} = \frac{\stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c}}{\stackrel{\rightarrow}{\rightarrow} \rightarrow \stackrel{\rightarrow}{\rightarrow}}; \quad \stackrel{\rightarrow}{q} = \frac{\stackrel{\rightarrow}{c} \times \stackrel{\rightarrow}{a}}{\stackrel{\rightarrow}{\rightarrow} \rightarrow}; \quad \stackrel{\rightarrow}{[a \ b \ c]}$

then the value of the expression

$$(\overrightarrow{a} + \overrightarrow{b}) \cdot \overrightarrow{p} + (\overrightarrow{b} + \overrightarrow{c}) \cdot \overrightarrow{q} + (\overrightarrow{c} + \overrightarrow{a}) \cdot \overrightarrow{r}$$
 is equal to

- (a) 0 (b) 1 (c) 2 (d

[IIT 1988]

(51) The number of vectors of unit length perpendicular to vectors

$$\overrightarrow{a} = (1, 1, 0)$$
 and $\overrightarrow{b} = (0, 1, 1)$ is

- (a) one (b) wo (c) three (d) infinite (e) none of these

[IIT 1987]

(52) Let $a = a_1 i + a_2 j + a_3 k$, $b = b_1 i + b_2 j + b_3 k$ and $c = c_1 i + c_2 j + c_3 k$ be three non-zero vectors such that c is a unit vector perpendicular to both the vectors \overrightarrow{a} and \overrightarrow{b} . If the angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{\pi}{6}$, then

$$egin{array}{ccccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ \end{array}$$
 is equal to

(a) 0 (b) 1 (c)
$$\frac{3}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)(c_1^2 + c_2^2 + c_3^2)$$

(d)
$$\frac{1}{4}(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)$$
 (e) none of these [IIT 1986]

- (53) A vector a has components 2p and 1 with respect to a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sense. If, with respect to the new system, a has components p + 1 and 1, then
 - (a) p = 0 (b) p = 1 or $p = -\frac{1}{3}$ (c) p = -1 or $p = \frac{1}{3}$
 - (d) p = 1 or p = -1

(e) none of these

[IIT 1986]

- (54) The volume of the parallelepiped whose sides are given by \rightarrow OB = i + j - k, OC = 3i - k, is
 - (a) $\frac{4}{13}$ (b) 4 (c) $\frac{2}{7}$
- (d) none of these

[IIT 1983]

- (55) The points with position vectors 60i + 3j, 40i 8j, ai 52j are collinear if

- (a) a = -40 (b) a = 40 (c) a = 20 (d) none of these

[IIT 1983]

- (56) For non-zero vectors $a, b, c, |(a \times b) \cdot c| = |a| |b| |c|$ holds if and only if

- (a) $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, $\overrightarrow{b} \cdot \overrightarrow{c} = 0$ (b) $\overrightarrow{c} \cdot \overrightarrow{a} = 0$, $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ (c) $\overrightarrow{b} \cdot \overrightarrow{c} = 0$, $\overrightarrow{c} \cdot \overrightarrow{a} = 0$ (d) $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a} = 0$ [IIT 1982]

- The scalar $\overrightarrow{A} \cdot (\overrightarrow{B} + \overrightarrow{C}) \times (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C})$ equals

13 - VECTOR ALGEBRA

(Answers at the end of all questions)

	<u>Answers</u>																			
E	1 a	2 C	3 a	4 b	5 d	6 d	7 a	8 C	9 C	10 d	11 b	12 b	13 c	14 c	15 C	16 b	17 d	18 d	19 b	20 a
	21 d	22 d	23 d	24 d	25 c	26 b	27 C	28 a	29 c	30 b	31 c	32 b	33 c	34 a	35 a	36 b	37 b	38 a	39 b,c	40 d
	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	•	60
	С	a,c	b	а	b	d	а	b	С	d	b	d	b	b	а	d	а			
														0	7	•				
													C	5						
												7								
									1											
							4		-											
						_	1)	•										
						2	+)	•										
				1		2	+		>	•										
						2	+		>	•										
		5		7		2	+		>	•										
				7		2	+		>	•										
						2	+		>	•										
						2			>	•										