(1) In triangle PQR, $\angle R = \frac{\pi}{2}$. If $\tan \left(\frac{P}{2}\right)$ and $\tan \left(\frac{Q}{2}\right)$ are the roots of the equation $ax^{2} + bx + c = 0$, $a \neq 0$, then

(a) a = b + c (b) c = a + b (c) b = c (d) b = a + c

(2) In triangle ABC, let $\angle C = \frac{\pi}{2}$. If r is the inradius and R is the circumradius of the triangle ABC, then 2(r + R) equals

(a) b + c (b) a + b (c) a + b + c (d) c + a

[AIEEE 2005]

(3) If $\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$, then $4x^2 - 4xy \cos \alpha + y^2$ is equal to

(a) $2 \sin 2\alpha$ (b) 4 (c) $4 \sin^2 \alpha$ (d) $-4 \sin^2 \alpha$

[AIEEE 2005]

(4) If in triangle ABC, the altitudes from the vertices A, B, C on opposite sides are in H.P., then sin A, sin B, sin C are in

(a) G.P. (b) A.P. (c) Arithmetic-Geometric Progression (d) H.P. [AIEEE 2005]

(5) Let α , β be such that $\pi < \alpha - \beta < 3\pi$. If $\sin \alpha + \sin \beta = -\frac{21}{65}$, then the value of $\cos \frac{\alpha - \beta}{2}$ is

(b) $\frac{3}{\sqrt{130}}$ (c) $\frac{6}{65}$ (d) $-\frac{6}{65}$

[AIEEE 2004]

If $u = \sin \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \sin^2 \theta}$, then difference between the maximum and minimum values of u ² is given by

(a) $2(a^2 + b^2)$ (b) $2\sqrt{a^2 + b^2}$ (c) $(a + b)^2$ (d) $(a - b)^2$ [AIEEE 2004]

(7) The sides of a triangle are $\sin \alpha$, $\cos \alpha$ and $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$. Then the greatest angle of the triangle is

(a) 60° (b) 90° (c) 120° (d) 150°

[AIEEE 2004]

- (8) A person standing on the bank of a river observes that the angle of elevation of the top of a tree on the opposite bank of a river is 60° and when he retires 40 m away from the tree, the angle of elevation becomes 30°. The breadth of the river is
 - (a) 20 m
- (b) 30 m (c) 40 m (d) 60 m

AIEEE 2004]

- (9) If in a triangle $a\cos^2\left(\frac{C}{2}\right) + c\cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c are

- (a) in A. P. (b) in G. P. (c) in H. P. (d) satisfy a + b = b

[AIEEE 2003]

- (10) The sum of the radii of inscribed and circumscribed circles, for an n sided regular polygon of side a, is

- (a) $a \cot \left(\frac{\pi}{2n}\right)$ (b) $b \cot \left(\frac{\pi}{n}\right)$ (c) $\frac{a}{2}\cot \left(\frac{\pi}{2n}\right)$ (d) $\frac{a}{4}\cot \left(\frac{\pi}{2n}\right)$ [AIEEE

AIEEE 2003]

- (11) The upper $\frac{3}{4}$ th portion of a vertical pole subtends an angle $\tan^{-1}\left(\frac{3}{5}\right)$ at a point in the horizontal plane through its foot and at a distance 40 m from the foot. The height of the vertical pole is (b) 40 m (c) 60 m (d) 80 m
 - (a) 20 m

[AIEEE 2003]

- (12) The value of $\cos^2\alpha$ + $\cos^2(\alpha + 120^\circ)$ + $\cos^2(\alpha 120^\circ)$ is
 - (a) $\frac{3}{2}$ b) $\frac{1}{2}$ (c) 1 (d) 0

[AIEEE 2003]

- (13) The trigonometric equation $\sin^{-1} x = 2 \sin^{-1} a$ has a solution for

- (a) $|a| < \frac{1}{\sqrt{2}}$ (b) $|a| \ge \frac{1}{\sqrt{2}}$ (c) $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ (d) all real values of a

[AIEEE 2003]

- (14) If $\sin \theta + \sin \phi = a$ and $\cos \theta + \cos \phi = b$, then the value of $\tan \left(\frac{\theta \phi}{2}\right)$ is
 - (a) $\sqrt{\frac{a^2 + b^2}{4 a^2 b^2}}$ (b) $\sqrt{\frac{4 a^2 b^2}{a^2 + b^2}}$

 - (c) $\sqrt{\frac{a^2+b^2}{4+a^2+b^2}}$ (d) $\sqrt{\frac{4+a^2+b^2}{a^2+b^2}}$

[AIEEE 2002]

- (15) If $\tan^{-1}(x) + 2\cot^{-1}(x) = \frac{2\pi}{3}$, then the value of x is

- (a) $\sqrt{2}$ (b) 3 (c) $\sqrt{3}$ (d) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$

AIEEE 2002]

- (16) The value of $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \dots + \tan^{-1}\left(\frac{1}{n^2 + n}\right)$
- (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{2\pi}{3}$ (d) 0

[AIEEE 2002 1

- (17) The angles of elevation of the top of a tower (A) from the top (B) and bottom (D) at a building of height a are 30° and 45° respectively. If the tower and the building stand at the same level, then the height of the tower is
- (a) $a\sqrt{3}$ (b) $\frac{a\sqrt{3}}{\sqrt{3}-1}$ (c) $\frac{a(3+\sqrt{3})}{2}$ (d) $a(\sqrt{3}-1)$ [AIEEE 2002]

- (18) If $\cos(\alpha \beta) = 1$ and $\cos(\alpha + \beta) = \frac{1}{e}$, $-\pi \le \alpha$, $\beta \le \pi$, then the number of ordered pairs $(\alpha, \beta) \ne$ ordered pairs (α, β)
- (a) 0 (b) 1 (c) 2 (d) 4

[IIT 2005]

(19) Which of the following is correct for triangle ABC having sides a, b, c opposite to the angles A, B, C respectively

(a)
$$a \sin \left(\frac{B-C}{2}\right) = (b-c) \cos \frac{A}{2}$$

(a) $a \sin \left(\frac{B-C}{2}\right) = (b-c) \cos \frac{A}{2}$ (b) $a \sin \left(\frac{B+C}{2}\right) = (b+c) \cos \frac{A}{2}$

(c) (b + c)
$$\sin\left(\frac{B+C}{2}\right) = a\cos\frac{A}{2}$$
 (d) $\sin\left(\frac{B-C}{2}\right) = a\cos\frac{A}{2}$

[IIT 2005]

- (20) Three circles of unit radii are inscribed in an equilateral triangle touching the sides of the triangle as shown in the figure. Then, the area of the triangle is

 - (a) $6 + 4\sqrt{3}$ (b) $12 + 8\sqrt{3}$

 - (c) $7 + 4\sqrt{3}$ (d) $4 + \frac{7}{2}\sqrt{3}$

(Answers at the end of all questions)

(21)	lf θ	and	фа	are a	acute	angles	such	that	$\sin \theta =$	$\frac{1}{2}$	and	cos θ =	$\frac{1}{3}$,	then	θ and	φĿ
	lies in	1														

- (a) $\left| \frac{\pi}{3}, \frac{\pi}{2} \right|$ (b) $\left| \frac{\pi}{2}, \frac{2\pi}{3} \right|$ (c) $\left| \frac{2\pi}{3}, \frac{5\pi}{3} \right|$ (d) $\left| \frac{5\pi}{6}, \pi \right|$

NT 2004]

- (22) For which value of x, $\sin[\cot^{-1}(x+1)] = \cos(\tan^{-1}x)$?

- (a) $\frac{1}{2}$ (b) 0 (c) 1 (d) $-\frac{1}{2}$

[IIT 2004]

- then A: B: C is
- (a) 3:2:1 (b) 3:1:2 (c) 1:3:2 (d) 1:2:3

[IIT 2004]

- x > 0, is always greater than or equal to
- (c) 2 tan α
- (d) sec α

[IIT 2003]

- (25) If the angles of a triangle are in the ratio 4:1:1, then the ratio of the largest side to the perimeter is equal to
- (a) 1:1 + $\sqrt{3}$ (b) 2:3 (c) $\sqrt{3}$:2 + $\sqrt{3}$ (d) 1:2 + $\sqrt{3}$

[IIT 2003]

- (26) The natural domain of $\sqrt{\sin^{-1}(2x) + \frac{\pi}{6}}$ for all $x \in \mathbb{R}$, is

- $\left[\frac{1}{4},\frac{1}{2}\right]$ (b) $\left[-\frac{1}{4},\frac{1}{4}\right]$ (c) $\left[-\frac{1}{2},\frac{1}{2}\right]$ (d) $\left[-\frac{1}{2},\frac{1}{4}\right]$

[IIT 2003]

- The length of a longest interval in which the function 3 sin x 4 sin³ x is increasing is
- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$ (d) π

[IIT 2002]

- (28) Which of the following pieces of data does NOT uniquely determine an acute-angled triangle ABC (R being the radius of the circumcircle)?
 - (a) a sin A, sin B (b) a, b, c (c) a, sin B, R (d) a, sin A, R

[IIT 2002]

- (29) The number of integral values of k for which the equation $7 \cos x + 5 \sin x = 2k + 1$ has a solution is
 - (a) 4

- (b) 8 (c) 10 (d) 12

IIT 2002 1

- (30) Let $0 < \alpha < \frac{\pi}{2}$ be a fixed angle. If $P = (\cos \theta, \sin \theta)$ and $Q = [\cos (\alpha \theta),$ $\sin (\alpha - \theta)$], then Q is obtained from P by
 - (a) clockwise rotation around origin through an angle α
 - (b) anticlockwise rotation around origin through an angle α
 - (c) reflection in the line through origin with slope tan a
 - (d) reflection in the line through origin with slope tan

[IIT 2002]

- (31) Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at a point X on the circumference of the circle, then 2r equals

- (c) $\frac{2PQ \cdot RS}{PQ + RS}$ (d) $\sqrt{\frac{PQ^2 + RS^2}{2}}$

- (32) A man from the top of a 100 metres high tower sees a car moving towards the tower at an angle of depression of 30°. After some time, the angle of depression becomes 60°. The distance in (metres) traveled by the car during this time is

 - (a) $100\sqrt{3}$ (b) $\frac{200\sqrt{3}}{3}$ (c) $\frac{100\sqrt{3}}{3}$ (d) $200\sqrt{3}$

[IIT 2001]

- $\beta = \frac{\pi}{2}$ and $\beta + \gamma = \alpha$, then $\tan \alpha$ equals
 - (a) $2(\tan \beta + \tan \gamma)$ (b) $\tan \beta + \tan \gamma$ (c) $\tan \beta + 2\tan \gamma$ (d) $2\tan \beta + \tan \gamma$

[IIT 2001]

- (34) If $\sin^{-1}\left(x-\frac{x^2}{2}+\frac{x^3}{4}-...\right)+\cos^{-1}\left(x^2-\frac{x^4}{2}+\frac{x^6}{4}-...\right)=\frac{\pi}{2}$ for $0<|x|<\sqrt{2}$, then x equals
- (a) $\frac{1}{2}$ (b) 1 (c) $-\frac{1}{2}$ (d) -1

[IIT 2001]

- (35) The maximum value of $(\cos \alpha_1) \cdot (\cos \alpha_2)$ $(\cos \alpha_n)$, under the restrictions $0 \le \alpha_1, \alpha_2, \ldots, \alpha_n \le \frac{\pi}{2}$ and $(\cos \alpha_1) \cdot (\cos \alpha_2) \ldots (\cos \alpha_n) = 1$ is
- (a) $\frac{1}{2^{n/2}}$ (b) $\frac{1}{2^n}$ (c) $\frac{1}{2n}$ (d) 1

IIT 2001 1

(36) The number of distinct real roots of

sin x cos x cos x cos x sin x cos x cos x cos x sin x

0 in the interval

 $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is

- (a) 0 (b) 2 (c) 1 (d) 3

[IIT 2001]

- (37) If $f(\theta) = \sin \theta (\sin \theta + \sin 3\theta)$, then $\frac{1}{100}$
 - (a) \geq 0 only when $\theta \geq$ 0

(b) \leq 0 for all real θ

(c) \geq 0 for all real θ

(d) ≤ 0 only when $\theta \leq 0$

[IIT 2000]

(38) In a triangle ABC, 2ac sin (A - B + C) =

(a) $a^2 + b^2 - c^2$ (b) $c^2 + a^2 - b^2$ (c) $b^2 - c^2 - a^2$ (d) $c^2 - a^2 - b^2$

[IIT 2000]

(39) In a triangle ABC, if $\angle C = \frac{\pi}{2}$, r = inradius and R = circum-radius, then 2(r + R) =

(a) a + b (b) b + c (c) c + a (d) a + b + c

[IIT 2000]

- A pole stands vertically inside a triangular park Δ ABC. If the angle of elevation of the top of the pole from each corner of the park is same, then in \triangle ABC, the foot of the pole is at the
 - (a) centroid (b) circumcentre (c) incentre (d) orthocentre

[IIT 2000]

- (41) In a triangle PQR, $\angle R = \frac{\pi}{2}$. If $\tan \left(\frac{P}{2}\right)$ and $\tan \left(\frac{Q}{2}\right)$ are the roots of the equation $ax^2 + bx + c = 0$ (a \neq 0), then
 - (a) a+b=c (b) b+c=a (c) c+a=b (d) b=c

[IIT 1999]

- (42) The number of real solutions of $\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2}$
 - (a) zero

- (b) one (c) two (d) infinite

[IIT 1999]

- (43) The number of values of x where the function $f(x) = \cos x + \cos(\sqrt{2x})$ attains its maximum is
 - (a) 0

- (b) 1 (c) 2 (d) infinite

[IIT 1998]

(44) If, for a positive integer n,

$$f_n(\theta) = \left(\tan\frac{\theta}{2}\right)(1 + \sec\theta)(1 + \sec2\theta)...(1 + \sec2^n\theta), \text{ then}$$

- (a) $f_2\left(\frac{\pi}{16}\right) = 1$ (b) $f_3\left(\frac{\pi}{32}\right) = 1$
- (c) $f_4\left(\frac{\pi}{64}\right) = 1$ (d) $f_5\left(\frac{\pi}{128}\right) = 1$

[IIT 1999]

- (45) If in a triangle BQR, sin P, sin Q, sin R are in A. P., then
 - (a) the altitudes are in A. P.
- (b) the altitudes are in H. P.
- (c) the medians are in G.P. (d) the medians are in A.P.

[IIT 1998]

- The number of values of x in the interval [0, 5π] satisfying the equation $3\sin^2 x 7\sin x + 2 = 0$ is

- (a) 0 (b) 5 (c) 6 (d) 10

[IIT 1998]

- (47) Which of the following number(s) is/are rational?
 - (a) sin 15°

- (b) cos 15° (c) sin 15° cos 15° (d) sin 15° cos 75°

[IIT 1998]

- (48) Let n be an odd integer. If $\sin n\theta = \sum_{r=1}^{11} b_r \sin^r \theta$, for every value of θ , then b_0 and b₁ respectively are

- (a) 1, 3 (b) 0, n (c) -1, n (d) 0, n^2 3n + 3

UT 1998 1

- (49) The parameter, on which the value of the determinant
 - cos(p-d)x cospx cos(p+d)x sin(p-d)x sinpx sin(p+d)xdoes not depend upon is

- (a) a (b) p (c) d (d) x

[IIT 1997]

- (50) The graph of the function cos x cos (x
 - (a) a straight line passing through the point $\left(\frac{\pi}{2}, -\sin^2 1\right)$ and parallel to the X-axis
 - (b) a straight line passing through (0, sin² 1) with slope 2
 - (c) a straight line passing through (0, 0)
 - (d) a parabola with vertex (1, sin² 1)

[IIT 1997]

- (51) If A₀ A₁ A₂ A₃ A₄ A₅ be a regular hexagon inscribed in a circle of unit radius, then the product of the lengths of the line segments A₀ A₁, A₀ A₂ and A₀ A₄ is

- (b) $3\sqrt{3}$ (c) 3 (d) $\frac{3\sqrt{3}}{2}$

[IIT 1998]

- $sec^2 θ = \frac{4xy}{(x + y)^2}$ is true if and only if

- (a) $x + y \neq 0$ (b) x = y, $x \neq 0$ (c) x = y (d) $x \neq 0$, $y \neq 0$

[IIT 1996]

- (53) The minimum value of the expression $\sin \alpha + \sin \beta + \sin \gamma$, where α , β , γ are the real numbers satisfying $\alpha + \beta + \gamma = \pi$ is
 - (a) positive
- (b) zero (c) negative (D) 3

[IIT 1995]

(Answers at the end of all questions)

- (54) In a triangle ABC, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$. If D divides \overline{BC} internally in the ratio 1: 3, then $\frac{\sin \angle BAD}{\sin \angle CAD}$ equals

- (a) $\frac{1}{\sqrt{6}}$ (b) $\frac{1}{3}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\sqrt{\frac{2}{3}}$

[IIT 1995]

- tan x + sec x = 2 cos x(55) Number of solutions of the equation lying in the interval [0, 2π], is

 - (a) 0 (b) 1 (c) 2 (d) 3

[IIT 1993]

- (56) If $x = \sum_{n=0}^{\infty} \cos^{2n} \phi$, $y = \sum_{n=0}^{\infty} \sin^{2n} \phi$, $z = \sum_{n=0}^{\infty} \cos^{2n} \phi \sin^{2n} \phi$, for $0 < \phi < \frac{\pi}{2}$,
 - (a) xyz = xz + y (c) xyz = x + y + z

[IIT 1993]

- (57) If $f(x) = \cos[\pi^2]x + \cos[-\pi^2]x$, where [x] stands for the greatest integer function, then
 - (a) $f\left(\frac{\pi}{2}\right) = -1$ (b) $f(\pi) = 1$ (c) $f(-\pi) = 0$ (d) $f\left(\frac{\pi}{4}\right) = 2$ [IIT 1991]
- (58) The equation $(\cos p 1)x^2 + (\cos p)x + \sin p = 0$ in the variable x has real roots. Then p can take any value in the interval
- (a) (0, 2π) (b) ($-\pi$, 0) (c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (d) (0, π)

[IIT 1990]

- (59) In a triangle ABC, angle A is greater than angle B. If the measures of angles A and B satisfy the equation $3 \sin x - 4 \sin^3 x - k = 0$, 0 < k < 1, then the measure of angle C is

- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{2\pi}{3}$ (d) $\frac{5\pi}{6}$

[IIT 1990]

- (60) The number of real solutions of the equation $\sin(e^x) = 5^x + 5^{-x}$ is
 - (a) 0

- (b) 1 (c) 2 (d) infinitely many

[IIT 1990]

- (61) The general solution of $\sin x 3 \sin 2x + \sin 3x = \cos x \cos 2x + \cos 3x$
 - (a) $n\pi + \frac{\pi}{8}$ (b) $\frac{n\pi}{2} + \frac{\pi}{8}$
- - (c) $(-1)^n \frac{n\pi}{2} + \frac{\pi}{8}$ (d) $2n\pi + \cos^{-1} \frac{3}{2}$

[IIT 1989]

- (62) The value of the expression $\sqrt{3}$ cosec 20° sec 20° is equal to

- (a) 2 (b) 4 (c) $\frac{2 \sin 20^{\circ}}{\sin 40^{\circ}}$ (d) $\frac{4 \sin 20^{\circ}}{\sin 40^{\circ}}$

[IIT 1988]

- (63) The values of θ lying between $\theta = 0$ and $\theta = \frac{\pi}{2}$ and satisfying the equation
 - $1 + \sin^{2}\theta \qquad \cos^{2}\theta \qquad 4 \sin 4\theta$ $\sin^{2}\theta \qquad 1 + \cos^{2}\theta \qquad 4 \sin 4\theta \qquad = 0 \text{ are}$ $\sin^{2}\theta \qquad \cos^{2}\theta \qquad 1 + 4 \sin 4\theta$

[IIT 1988]

- (64) In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in A. P., then the lengths of the third side can be
 - (a) $5 \sqrt{6}$ (b) $3\sqrt{3}$ (c) 5 (d) $5 + \sqrt{6}$

[IIT 1987]

- The smallest positive root of the equation $\tan x = x$ lies in

- (a) $\left(0,\frac{\pi}{2}\right)$ (b) $\left(\frac{\pi}{2},\pi\right)$ (c) $\left(\pi,\frac{3\pi}{2}\right)$ (d) $\left(\pi,\frac{3\pi}{2}\right)$

[IIT 1987]

- (66) The number of all triplets (a_1, a_2, a_3) such that $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0$ for all x is
 - (a) 0

- (b) 1 (c) 3 (d) infinite (e) none of these

[IIT 1987]

- (67) The principal value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$ is

- (a) $-\frac{2\pi}{3}$ (b) $\frac{2\pi}{3}$ (c) $\frac{4\pi}{3}$ (d) $\frac{5\pi}{3}$ (e) none of these
- [117 1986]

(68)The expression

$$3\left[\sin^4\left(\frac{3\pi}{2}-\alpha\right)+\sin^4\left(3\pi+\alpha\right)\right]-2\left[\sin^6\left(\frac{\pi}{2}+\alpha\right)+\sin^6\left(5\pi-\alpha\right)\right]$$
 is equal to

- (a) 0 (b) 1 (c) 3 (d) $\sin 4\alpha + \cos 4\alpha$
- [IIT 1986]

- (69) There exists a triangle ABC satisfying the conditions

 - (a) $b \sin A = a$, $A < \frac{\pi}{2}$ (b) $b \sin A > a$, $A > \frac{\pi}{2}$
- (c) $b \sin A > a$, $A < \frac{\pi}{2}$ (d) $b \sin A < a$, $A < \frac{\pi}{2}$, b > a(e) $b \sin A < a$, $A > \frac{\pi}{2}$, b = a
- [IIT 1986]
- (70) $\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right)$ is equal to

- (a) $\frac{1}{2}$ (b) $\cos \frac{\pi}{8}$ (c) $\frac{1}{8}$ (d) $\frac{1+\sqrt{2}}{2\sqrt{2}}$

- [IIT 1984]
- (71) From the top of a light-house 60 m high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the lighthouse is

 - (a) $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)$ 60 metres (b) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)^2$ metres (c) $\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)$ 60 metres (d) None of these

[IIT 1983]

- (72) The value of $\tan \left| \cos^{-1} \left(\frac{4}{5} \right) + \tan^{-1} \left(\frac{2}{3} \right) \right|$ is

- (a) $\frac{6}{17}$ (b) $\frac{7}{16}$ (c) $\frac{16}{7}$ (d) None of these

[IIT 1983]

(73) If
$$f(x) = \cos(\ln x)$$
, then $f(x)f(y) - \frac{1}{2} \left[f\left(\frac{x}{y}\right) + f(xy) \right]$ has the value

- (a) -1 (b) $\frac{1}{2}$ (c) -2 (d) none of these

1983 1

(74) The general solution of the trigonometric equation $\sin x + \cos x = 1$ is given by

(a)
$$x = 2 n \pi$$
, $n = 0, \pm 1, \pm 2, \dots$ (b) $x = 2 n \pi + \frac{\pi}{2}$, $n = 0, \pm 1, \pm 2, \dots$

(c)
$$x + n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$$
, $n = 0, \pm 1, \pm 2, ...$ (d) none of these [IIT 1981]

(75) If $A = \sin^2 \theta + \cos^4 \theta$, then for all real values of θ

- (a) $1 \le A \le 2$ (b) $\frac{3}{4} \le A \le 1$ (c) $\frac{13}{16} \le A \le 1$ (d) $\frac{3}{4} \le A \le \frac{13}{16}$

[IIT 1980]

(76) The equation $2\cos^2\left(\frac{1}{2}x\right)\sin^2x = x^2 + x^{-2}$, $0 < x \le \frac{\pi}{2}$ has

- (c) more than one real solution

[IIT 1980]

(77) If $\tan \theta = \frac{-4}{3}$, then $\sin \theta$ is

- (a) $\frac{-4}{5}$ but not $\frac{4}{5}$ (b) $\frac{-4}{5}$ or $\frac{4}{5}$

 - c) $\frac{4}{5}$ but not $\frac{-4}{5}$ (d) none of these

[IIT 1979]

78) If $\alpha + \beta + \gamma = 2\pi$, then

- (a) $\tan \frac{\gamma}{2} + \tan \frac{\beta}{2} + \tan \frac{\alpha}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
- (b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$
- (c) $\tan \frac{\gamma}{2} + \tan \frac{\beta}{2} + \tan \frac{\alpha}{2} = -\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
- (d) none of these

[IIT 1979]

15 - TRIGONOMETRY

(Answers at the end of all questions)

	<u>Answers</u>																			
1	2	2 3	4	5	6	7	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	b		b	а	d		;	а	а	С	b	а	а	b	С	b	С	d	а	а
21	22	2 23	24	25	26	6 2	7 1	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	_	C	C	a			d	b	d	a	b	C	b	a	C	e	b	a	b
	40	140	4.4		45	40	4-	10	- 40		T = 4	=0	1 50	1 = 4						
41 a	42 c		44 a,b,c		45 d	46 C	47 C	48 b	49 b	50 a	51 C	52 b	53	54 a	55 d	5 6	57 a,c	58 b	59 C	60
												•		1						
61	62		64	65		_	-	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	a,c	a,c	а	_	<u> </u>	е	b	a,d	С	С	-	d	С	b	а	а	а		
					2															