(Answers at the end of all questions)

- (1) Let $R = \{ (3,3) (6,6) ((9,9) (12,12), (6,12) (3,9) (3,12), (3,6) \}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is
 - (a) reflexive and transitive
- (b) reflexive only
- (c) an equivalence relation
- (d) reflexive and symmetric only

[AIEEE 2005]

- 1-x², then f is both (2) Let $f: (-1, 1) \rightarrow B$ be a function defined by $f(x) = tan^{-1}$ one-one and onto when B is the interval
- (a) $\left(0, \frac{\pi}{2}\right)$ (b) $\left[0, \frac{\pi}{2}\right]$ (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

[AIEEE 2005]

- (3) If a real valued function f(x) satisfies the functional equation f(x - y) = f(x)f(y) - f(a - x)f(a + y), where 'a' is a given constant and f(0) = 1, then f(2a - x) is equal to
 - (a) f(x) (b) f(x)
- (c) (a) + (a x) (d) f(-x)

[AIEEE 2005]

- (4) Let $R = \{(1,3), (4,2), (2,4), (2,3), (3,1)\}$ be a relation on the set $A = \{1,2,3,4\}$. The relation R is
 - (a) a function
- (b) transitive (c) not symmetric (d) reflexive [AIEEE 2004]

- (5) The range of the function $f(x) = {}^{7-x}P_{x-3}$ is
- { 1, 2, 3 } { 1, 2, 3, 4 }
- (b) {1, 2, 3, 4, 5, 6} (d) {1, 2, 3, 4, 5}

[AIEEE 2004]

- If f: R \rightarrow S, defined by f(x) = sin x $\sqrt{3}$ cos x + 1 is onto, then the interval of S is

- (a) [0, 3] (b) [-1, 1] (c) [0, 1] (d) [-1, 3] [AIEEE 2004]

- (7) The graph of the function f(x) is symmetrical about the line x = 2, then
 - (a) f(x + 2) = f(x 2) (b) f(2 + x) = f(2 x)
 - (c) f(x) = f(-x)
- (d) f(x) = -f(-x)

[AIEEE 2004]

- (8) The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{2-x^2}}$ is
- (a) [2, 3] (b) [2, 3) (c) [1, 2] (d) [1, 2)

(9) If f: $\{1, 2, 3,\} \rightarrow \{0, \pm 1, \pm 2,\}$ is defined by

$$f(x) = \begin{cases} \frac{x}{2}, & \text{if } x \text{ is even} \\ -\frac{(x-1)}{2}, & \text{if } x \text{ is odd} \end{cases}$$
 then value of $f^{-1}(-100)$ is

- (a) 100 (b) 199 (c) 200 (d) 201

[AIEEE 2003]

- (a) 100 (b) 199 (c) 200 (d) 201 [A]

 (10) Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3-x)$ is

- (a) (1, 2) (b) $(-1, 0) \cup (1, 2)$ [AIEEE 2003]

- (11) The function $f(x) = \log(x + \sqrt{x^2 + 1})$ is a/an
 - (a) even function(b) odd function(c) periodic function(d) none of these

[AIEEE 2003]

- (12) The function $f: R \to R$ defined by $f(x) = \sin x$ is

(a) into (b) onto (c) one-one (d) many-one [AIEEE 2002]

- 13) The range of the function $f(x) = \frac{2+x}{2-x}$, $x \ne 2$ is

(a) R (b) R - {-1} (c) R - {1} (d) R - {2} [AIEEE 2002]

- (14) If $f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$ and $g(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ x, & x \notin \mathbb{Q} \end{cases}$, then (f g) is

 - (a) one-one, onto (b) neither one-one nor onto
 - (c) one-one but not onto (d) onto but not one-one

[IIT 2005]

If $f(x) = \sin x + \cos x$ and $g(x) = x^2 - 1$, then g[f(x)] will be invertible for the (15)

(b)
$$\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$$

(a)
$$\begin{bmatrix} 0, \pi \end{bmatrix}$$
 (b) $\begin{bmatrix} -\frac{\pi}{4}, \frac{\pi}{4} \end{bmatrix}$ (c) $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ (d) $\begin{bmatrix} -\frac{\pi}{2}, 0 \end{bmatrix}$

(16) The range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$, $x \in (-\infty, \infty)$ is

(b)
$$(1, \frac{11}{7})$$

(c)
$$(1, \frac{7}{3})$$

(a)
$$[1, \infty)$$
 (b) $(1, \frac{11}{7})$ (c) $(1, \frac{7}{3}]$ (d) $[1, \frac{7}{5}]$

[IIT 2003]

(17)
$$f:[0, \infty) \to [0, \infty), \quad f(x) = \frac{x}{1+x}$$
 is

$$f(x) = \frac{x}{1+x} \text{ is}$$

- (a) one-one and onto (b) one-one but not onto (c) onto but not one-one (d) neither one-one nor onto

[IIT 2003]

(18) If $f(x) = (x + 1)^2$ for $x \ge -1$ and g(x) is the function whose graph is reflection of the graph of f(x) with respect to the line y = x, then g(x) equals

(a)
$$-\sqrt{x} - 1$$
, $x \ge 0$

(a)
$$-\sqrt{x} - 1$$
, $x \ge 0$ (b) $\frac{1}{(x+1)^2}$, $x > -1$ (c) $\sqrt{x+1}$, $x \ge -1$ (d) $\sqrt{x} - 1$, $x \ge 0$

(c)
$$\sqrt{x+1}$$
, $x \ge -1$

$$(d) \sqrt{x} - 1, \quad x \ge 0$$

[IIT 2002]

(19) If function $f: R \to R$ is defined as $f(x) = 2x + \sin x$ for $x \in R$, then f is

- (a) one-one and onto (b) one-one but not onto
- (c) onto but not one-one (d) neither one-one nor onto

[IIT 2002]

20) If g(x) = 1 + x - [x] and $f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0, \text{ then for all } x, & f[g(x)] = 1, & x > 0 \end{cases}$

- (a) x (b) 1 (c) f(x) (d) g(x)

[IIT 2001]

(21) If $f: [1, \infty) \rightarrow [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$, then $f^{-1}(x)$ equals

(a)
$$\frac{x + \sqrt{x^2 - 4}}{2}$$
 (b) $\frac{x}{1 + x^2}$ (c) $\frac{x - \sqrt{x^2 - 4}}{2}$ (d) $1 + \sqrt{x^2 - 4}$ [IIT 2001]

(b)
$$\frac{x}{1+x^2}$$

(c)
$$\frac{x - \sqrt{x^2 - 4}}{2}$$

(d) 1 +
$$\sqrt{x^2 - 4}$$

(22) The domain of definition of
$$f(x) = \frac{\log_2(x+3)}{x^2 + 3x + 2}$$
 is

- (a) R $\{-1, -2\}$ (b) $(-2, \infty)$ (c) R $\{-1, -2, -3\}$ (d) $(-3, \infty)$ $\{-1, -2\}$

[117 2001]

- (23) If $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$, then the number of onto functions from E to F is
- (a) 14 (b) 16 (c) 12 (d) 8

[IIT 2001]

- (24) If $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$, then for which value of α is f[f(x)] = x?

 - (a) $\sqrt{2}$ (b) $\sqrt{2}$ (c) 1 (d) -

[IIT 2001]

- (25) Let $f: R \to R$ be any function. Define $g: R \to R$ by g(x) = |f(x)| for all x. Then g is
 - (a) onto if f is onto
- (b) one-one if f is one-one
- (c) continuous if f is continuous (d) differentiable if f is differentiable [IIT 2000]

- (26) The domain of definition of the function y(x) as given by the equation $2^x + 2^y = 2$ is
 - (a) $0 < x \le 1$ (b) $0 \le x \le 1$ (c) $-\infty < x \le 0$ (d) $-\infty < x < 1$ [IIT 2000]

- (27) If the function $f: [1, \infty) \rightarrow [1, \infty)$ is defined by $f(x) = 2^{x(x-1)}$, then $f^{-1}(x)$ is

 - (a) $\binom{1}{2}^{x(x-1)}$ (b) $\frac{1}{2}(1 + \sqrt{1 + 4\log_2 x})$
 - (c) $\frac{1}{2}$ (1 + $\sqrt{1 4\log_2 x}$) (d) not defined

[IIT 1999]

- 28 In a college of 300 students, every student reads 5 newspapers and every newspaper is read by 60 students. The number of newspapers is

- (a) at least 30 (b) at most 20 (c) exactly 25 (d) none of these

[IIT 1998]

- (29) If $f(x) = \frac{x^2 1}{x^2 + 1}$, for every real number x, then the minimum value of f
 - (a) does not exist as f is unbounded
- (b) is equal to 1
- (c) is not attained even though f is bounded (d) is equal to -1

[IIT 1998]

(Answers at the end of all questions)

- (30) If f(x) = 3x 5, then $f^{-1}(x)$
 - (a) is given by $\frac{1}{3x-5}$ (b) is given by $\frac{x+5}{3}$
 - (c) does not exist because f is not one-one
 - (d) does not exist because f is not onto

MT 1998]

[IIT 1998]

- (31) If $g[f(x)] = |\sin x|$ and $f[g(x)] = (\sin \sqrt{x})^2$, then
 - (a) $f(x) = \sin^2 x$, $g(x) = \sqrt{x}$ (b) $f(x) = \sin x \cdot g(x) = |x|$
 - (c) $f(x) = x^2$, $g(x) = \sin \sqrt{x}$ (d) f and g cannot be determined
- (32) If $f(x) = (x + 1)^2 1$, $(x \ge -1)$, then the set $S = \{x : f(x) = f^{-1}(x)\}$ is
 - (a) $\left\{0, -1, \frac{-3 + i\sqrt{3}}{2}, \frac{-3 i\sqrt{3}}{2}\right\}$ (b) $\{0, 1, -1\}$
 - (c) {0, -1} (d) empty [IIT 1995]
- (33) The number log₂ 7 is

 - (a) an integer (b) a rational number (c) an irrational number (d) a prime number

[IIT 1990]

- (34) If S is the set of all real x such that $\frac{2x-1}{2x^3+3x^2+x}$ is positive, then S contains
 - $\left(-\infty, -\frac{3}{2}\right)$ (b) $\left(-\frac{3}{2}, -\frac{1}{4}\right)$ (c) $\left(-\frac{1}{4}, -\frac{1}{2}\right)$
 - (e) none of these [IIT 1986]
- (35) If $y = f(x) = \frac{x+2}{x-1}$, then
 - (a) x = f(y) (b) f(1) = 3(c) y increases with x for x < 1
 - (d) f is a rational function of x

[IIT 1984]

(Answers at the end of all questions)

(36) Let
$$f(x) = |x - 1|$$
. Then

- (a) $f(x^2) = [f(x)]^2$ (b) f(x + y) = f(x) + f(y) (c) f(|x|) = |f(x)| (d) None of these

IT 1983]

(37) The domain of definition of the function $y = \frac{1}{\log_{10} (1 - x)} + \sqrt{x + 2}$

- (a) (-3, -2) excluding -2.5 (b) [0, 1] excluding 0.5
- (c) [-2, 1] excluding 0 (d) None of these

[IIT 1983]

- (38) Which of the following functions is periodic?
 - (a) f(x) = x [x] where [x] denotes the largest integer less than or equal to the real number x
 - (b) $f(x) = \sin \frac{1}{x}$ for $x \neq 0$, f(0) = 0
 - (c) $f(x) = x \cos x$ (d) None of these

[IIT 1983]

- (39) If X and Y are two sets, then $X \cap (X \cup Y)^c$ equals
 - (a) X

- (d) none of these

[IIT 1979]

- (40) Let R be the set of real numbers. If $f: R \to R$ is a function defined by $f(x) = x^2$, then f is
 - (a) injective but not subjective
- (b) subjective but not injective

c) bijective

(d) none of these

[IIT 1979]

Answers

Ī	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ſ	а	d	а	С	а	d	b	b	d	b	а	d	b	а	b	С	b	d	а	b

21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	d	а	d	С	d	b	С	d	b	а	С	С	a,d	a,d	d	С	а	С	d