04 - QUADRATIC EQUATIONS (Answers at the end of all questions)

04 - QUADRATIC EQUATIONS (Answers at the end of all questions)

(8) The value of 'a' for which one root of quadratic equation
(a² - 5a + 3)x² + (3a - 1)x + 2 = 0 is twice as large as the other is
(a)
$$\frac{2}{3}$$
 (b) $-\frac{2}{3}$ (c) $\frac{1}{3}$ (d) $-\frac{1}{3}$ [AIEEE 2003]
(9) If roots of the equation $x^2 - 5x + 16 = 0$ are α, β and roots of the equation
 $x^2 + px + q = 0$ are $\alpha^2 + \beta^2$ and $\frac{\alpha\beta}{2}$, then
(a) $p = 1$ and $q = -56$ (b) $p = -1$ and $q = -56$
(c) $p = 1$ and $q = 56$ (d) $p = -1$ and $q = 56$
(l) $p = -1$ and $q = 56$ (e) $p = -1$ and $q = -56$
(c) $p = 1$ and $q = 56$ (f) $p = -1$ and $q = 56$
(10) If α and β be the roots of the equation $(x - a)(x - b) = 0$, $c \neq 0$, then the roots
of the equation $(x - \alpha)(x - \beta) = c$ are
(a) a and c (b) b and c
(c) a and b (d) $(a + b)$ and $(b + c)$ [AIEEE 2002, IIT 1992]
(11) If one root of the equation $x^2 + px q = 0$ is square of the other, then for any p
and q it will satisfy the relation
(a) $p^3 - q(3p - 1) + q^2 = 0$ (b) $p^3 - q(3p + 1) + q^2 = 0$ [IIT 2004]
(12) If $x^2 + 2ax + 16 - ba = 0$ for every real value of x, then
(a) $a > 5$ (b) $a^2 - 5$ (c) $-5 < a < 2$ (d) $2 < a < 5$ [IIT 2004]
(13) If minimum value of $f(x) = x^2 + 2bx + 2c^2$ is greater than the maximum value of
 $p(x) = -x^2 - 2cx + b^2$, then for real value of x
(a) $(-\infty, -2) \cup (2, \infty)$ (b) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$
(c) $(-\infty, -1) \cup (1, \infty)$ (d) $(\sqrt{2}, \infty)$ [IIT 2002]

WWW. SchoolinotesAtu.com

Page 2

04 - QUADRATIC EQUATIONS

(Answers at the end of all questions)

Page 3

04 - QUADRATIC EQUATIONS (Answers at the end of all questions)

(22)	If p, q, r are positive and are in A. P., then the roots of the quadra $px^{2} + qx + r = 0$ are real for (a) $\left \frac{r}{p} - 7 \right \ge 4\sqrt{3}$ (b) $\left \frac{p}{r} - 7 \right \ge 4\sqrt{3}$	tic equation
	(c) all p and r (d) no p and r	[IIT 1995]
(23)	Let $f(x)$ be a quadratic expression which is positive for all real x. If $g(x)$ f'(x) + f''(x), then for any real x (a) $g(x) < 0$ (b) $g(x) > 0$ (c) $g(x) = 0$ (d) $g(x) \ge 0$	() = f(x) +
(24)	If α and β are the roots of $x^2 + px + q = 0$ and α^4 and β^4 are $x^2 - rx + s = 0$, then the equation $x^2 - 4qx + 2q^2 - r = 0$ has always	the roots of
	 (a) two real roots (b) two positive roots (c) two negative roots (d) one positive and one negative root 	[IIT 1989]
(25)	Let a, b, c be real numbers, a = 0. If α is a root of $a^2 x^2 + bx + c = root of a^2 x^2 - bx - c = 0 and 0 < \alpha < \beta, then the equation a^2 x^2 + 2b has a root \gamma that always satisfies$	=0,β is a bx+2c=0
	(a) $\gamma = \frac{\alpha + \beta}{2}$ (b) $\gamma = \alpha + \frac{\beta}{2}$ (c) $\gamma = \alpha$ (d) $\alpha < \gamma < \beta$	[IIT 1989]
(26)	The equation $x^{\frac{3}{4}} (\log_2 x)^2 + \log_2 x - \frac{5}{4} = \sqrt{2}$ has	
	(a) at least one real solution (b) exactly three real solutions (c) exactly one irrational solution (d) complex roots	[IIT 1989]
(27)	The equation $x - \frac{2}{x - 1} = 1 - \frac{2}{x - 1}$ has	
\mathcal{V}	 (a) no root (b) one root (c) two equal roots (d) infinitely many roots 	[IIT 1984]
-		
(28)	For real x, the function $\frac{(x - a)(x - b)}{(x - c)}$ will assume all real values provide	ed
	(a) a > b > c (b) a > b > c (c) a > c > b (d) a < c < b	[IIT 1984]
	www.schoolnotes4u.com	

04 - QUADRATIC EQUATIONS

(Answers at the end of all questions)

www.schoolnotes4u.com

04 - QUADRATIC EQUATIONS

(Answers at the end of all questions)

- Page 6
- (36) If the two equations $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ have a common root, then the value of (aq - bp)(br - cq) is (a) $-(ar - cp)^2$ (b) $(ap - cr)^2$ (c) $(ac - pr)^2$ (d) $(ar - cp)^2$ (37) The set of values of p for which the roots of the equation $3x^2 + 2x + p(p - x)$ are of opposite signs is (a) $(-\infty, 0)$ (b) (0, 1) (c) $(1, \infty)$ (d) $(0, \infty)$ (38) If the roots of the equation $a(b - c)x^2 + b(c - a)x + c(a - b) = 0$ are equal, then a, b, c are in (a) H.P. (b) G.P. (c) A.P. (d) none of these (39) The value of p for which the difference between the roots of the equation $x^{2} + px + 8 = 0$ is 2 are (a) ± 2 (b) ± 4 (c) ± 6 (d) ± 8 (40) If a > 0, then $\sqrt{a + \sqrt{a + \sqrt{a + \dots \infty}}} =$ (a) $\frac{1}{2}\sqrt{4a-1}$ (b) $\frac{1}{2}\left[1+\sqrt{4a-1}\right]$ (c) $\frac{1}{2}\left[1-\sqrt{4a-1}\right]$ (d) none of these (41) If for the quadratic equation $ax^2 + bx + c = 0$, the difference of the roots is the same as their product, then the ratio of the roots is a - b (b) $\frac{b - c}{b + c}$ (c) $\frac{c - a}{c + a}$ (d) none of these (2) The integral values of m for which the roots of the equation $mx^{2} + (2m - 1)x + (m - 2) = 0$ are rational for rational k are given by (a) k(k + 1) (b) $\frac{k^2 - 1}{4}$ (c) $\frac{k(k + 2)}{4}$ (d) none of these www.schoolnotes4u.com

<u>04 - QUADRATIC EQUATIONS</u> (Answers at the end of all questions)

(43) If $x^2 + 6x - 27 > 0$ and $-x^2 + 3x + 4 > 0$, the x lies in the interval																			
	(a)	(3,	4)	(b) [3,4]	I	(c)	(- 9	9,3]	∪ [4	4,9)		(d)	(- 9	, 4)			
<mark>(44)</mark>	The	roo	ts of	the	equat	ion	log . 7	7 ^{(x2}	- 4x	+ 5)	= x	- 1	are				C		
	(a)) 2,	3	(b)7	(c) -	2, -	3	(d) 2,	- 3							
)	•		
(45)	lf n a	2, 3 are	are	roots	s of t	he ec	luatio	on 23	κ ³ +	mx ²	- 13)	(+ n	= 0	, the	n the	e valu	ies o	of m	and
	(a)) - 5	, - 30)	(b)	- 5,	30	((;) 5	, 30	((d)	none	of t	hese				
												5							
(46)	lf s	sinα 2	and	cos	α ar	e the	root	s of	the	equa	tion	ax ² -	⊦ bx	+ C	= 0,	then			
	(a) (c)	а ⁻ (а	+ b ⁻ + c)	- 2a) ² = 1	$b^2 + c$) c ²	(b) (d)	a⁻ (a	- b ⁻ - c)	+ 2a = t	c = ($p^{2} + ($	0 c ²							
(47)	(47) If the equations $ax^2 + 2cx + b = 0$ and $ax^2 + 2bx + c = 0$ (b \neq c) have a common root, then a + 4b + 4c =																		
	(a) 0 (b) 1 (c) -1 (d) none of these																		
Ø '																			
	Answers																		
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21	22	C 23	24	25	26	U 27	a 29	U 20	נ ג	a 1 21	U 22	a 22	34	IJ 25	36	37	38	30	a 40
a	b	b	24 a	d	a,b	a	C,0	a a	, 3 a		C	C	b	b	d	b	a	C	b
41 b	42 a	43 a	44 a	45 b	46 b,c	47 a	48	49	50	51	52	53	54	55	56	57	58	59	60
																-			

Page 7