(1) The value of a for which the sum of the squares of the roots of the equation $x^{2}-(a-2) x-a-1=0$ assume the least value is
(a) 1
(b) 0
(c) 3
(d) 2

AIEEE 2005]
(2) If the roots of the equation $x^{2}-b x+c=0$ be two consecutive integers, then $b^{2}-4 c$ equals
(a) - 2
(b) 3
(c) 2
(d) 1
[AIEEE 2005]
(3) If both the roots of the quadratic equation $x^{2}-2 k x+k^{2}+k-5=0$ are less than 5 , then k lies in the interval
(a) (5, 6]
(b) $(6, \infty)$
(c) $(\infty, 4)$
(d) $[4,5]$
[AIEEE 2005]
(4) Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation
(a) $x^{2}+18 x+16=0$
(b) $x^{2}-18 x+16=0$
(c) $\mathrm{x}^{2}+18 \mathrm{x}-16=0$
(d) $x^{2}-18 x-16=0$
[AIEEE 2004]
(5) If $(1-p)$ is a root of quadratic equation $x^{2}+p x+(1-p)=0$, then the roots are
(a) 0 ,
(b) $-1,1$
(c) 0,-1
(d) $-1,2$
[AIEEE 2004]
(6) If one root of the equation $x^{2}+p x+12=0$ is 4 , while the equation $p x+12=0$ has equal roots, then the value of q is
(a) $\frac{49}{4}$
(b) 12
(c) 3
(d) 4
[AIEEE 2004]
(7) The number of real solutions of the equation $x^{2}-3|x|+2=0$ is
(a) 2
(b) 4
(c) 1
(d) 3
[AIEEE 2003]
(8) The value of ' a ' for which one root of quadratic equation $\left(a^{2}-5 a+3\right) x^{2}+(3 a-1) x+2=0$ is twice as large as the other is
(a) $\frac{2}{3}$
(b) $-\frac{2}{3}$
(c) $\frac{1}{3}$
(d) $-\frac{1}{3}$
[AIEEE 2003]
(9) If roots of the equation $x^{2}-5 x+16=0$ are α, β and roots of the equation $x^{2}+p x+q=0$ are $\alpha^{2}+\beta^{2}$ and $\frac{\alpha \beta}{2}$, then
(a) $p=1$ and $q=-56$
(b) $p=-1$ and $q=-56$
(c) $\mathrm{p}=1$ and $\mathrm{q}=56$
(d) $p=-1$ and $q=56$
[AIEEE 2002]
(10) If α and β be the roots of the equation $(x-a)(x-b)=c, c \neq 0$, then the roots of the equation $(x-\alpha)(x-\beta)=c$ are
(a) a and c
(b) b and c
(c) a and b
(d) $(a+b)$ and $(b+c)$
[AIEEE 2002, IIT 1992]
(11) If one root of the equation $x^{2}+p x+q=0$ is square of the other, then for any p and q it will satisfy the relation
(a) $p^{3}-q(3 p-1)+q^{2}=0$
(b) $p^{3}-q(3 p+1)+q^{2}=0$
(c) $p^{3}+q(3 p-1)+q^{2}$
(d) $p^{3}+q(3 p+1)+q^{2}=0$
[IIT 2004]
(12) If $x^{2}+2 a x+10-3 a>0$ for every real value of x, then
(a) $a>5$
(b) $a<-5$
(c) $-5<a<2$
(d) $2<a<5$
[IIT 2004]
(13) If minimum value of $f(x)=x^{2}+2 b x+2 c^{2}$ is greater than the maximum value of $g(x)=-x^{2}-2 c x+b^{2}$, then for real value of x
(a) $|c|>|b| \sqrt{2}$
(b) $|c| \sqrt{2}>b$
(c) $0<c<\sqrt{2} b$
(d) no real value of a
[IIT 2003]
(14) The set of all real numbers x for which $x^{2}-|x+2|+x>0$, is
(a) $(-\infty,-2) \cup(2, \infty)$
(b) $(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$
(c) $(-\infty,-1) \cup(1, \infty)$
(d) $(\sqrt{2}, \infty)$
[IIT 2002]
(15) The number of solutions of $\log _{4}(x-1)=\log _{2}(x-3)$ is
(a) 3
(b) 1
(c) 2
(d) 0
[IIT 2001]
(16) If α and β are the roots of the equation $x^{2}+b x+c=0$, where $c<0<b$, then
(a) $0<\alpha<\beta$
(b) $\alpha<0<\beta<|\alpha|$
(c) $\alpha<\beta<0$
(d) $\alpha<0<|\alpha|<\beta$
[IIT 2000]
(17) For the equation $3 x^{2}+p x+3=0, p>0$, if one of the roots is square of the other, then p is equal to
(a) $\frac{1}{3}$
(b) 1
(c) 3
(d) $\frac{2}{3}$
[IIT 2000]
(18) If $b>a$, the equation $(x-a)(x-b)-1=0$ has
(a) both roots in (a, b) (b) one root in ($-\infty$, a) and the other in (b, $+\infty$)
(c) both roots in $(b,+\infty)(\mathrm{d})$ both roots in $(-\infty, a)$
[IIT 2000]
(19) The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0$ is
(a) 2
(b) 4
(c) 6
(d) 8
[IIT 1999]
(20) If the roots of the equation $x^{2}-2 a x+a^{2}+a-3=0$ are real and less than 3 , then
(a) $a<2$
(b) $2 \leq a \leq 3$
(c) $3<a \leq 4$
(d) a >4
[IIT 1999]
(21) The equation $\sqrt{x+1}-\sqrt{x-1}=\sqrt{4 x-1}$ has
(a) no solution
(b) one solution
(c) two solutions
(d) more than two solutions
[IIT 1997]
(22) If p, q, r are positive and are in A. P., then the roots of the quadratic equation $p x^{2}+q x+r=0$ are real for
(a) $\left|\frac{r}{p}-7\right| \geq 4 \sqrt{3}$
(b) $\left|\frac{p}{r}-7\right| \geq 4 \sqrt{3}$
(c) all p and r
(d) no p and r
[IIT 1995]
(23) Let $f(x)$ be a quadratic expression which is positive for all real x If $g(x)=f(x)+$ $f^{\prime}(x)+f "(x)$, then for any real x
(a) $g(x)<0$
(b) $g(x)>0$
(c) $g(x)=0$
(d)
[IIT 1990]
(24) If α and β are the roots of $x^{2}+p x+q=0$ and α^{4} and β^{4} are the roots of $x^{2}-r x+s=0$, then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always
(a) two real roots
(b) two positive roots
(c) two negative roots
(d) one positive and one negative root
[IIT 1989]
(25) Let a, b, c be real numbers, $a=0$. If α is a root of $a^{2} x^{2}+b x+c=0, \beta$ is a root of $a^{2} x^{2}-b x-c=0$ and $0<\alpha<\beta$, then the equation $a^{2} x^{2}+2 b x+2 c=0$ has a root γ that always satisties
(a) $\gamma=\frac{\alpha+\beta}{2}$
(b)
(c) $\gamma=\alpha$
(d) $\alpha<\gamma<\beta$
[IIT 1989]
(26) The equation $x^{\frac{3}{4}}\left(\log _{2} x\right)^{2}+\log _{2} x-\frac{5}{4}=\sqrt{2}$ has
(a) at leâst one real solution
(b) exactly three real solutions
(c) exactly one irrational solution
(d) complex roots
[IIT 1989]
(27) The equation $x-\frac{2}{x-1}=1-\frac{2}{x-1}$ has
(a) no root
(b) one root
(c) two equal roots
(d) infinitely many roots
[IIT 1984]
(28) For real x, the function $\frac{(x-a)(x-b)}{(x-c)}$ will assume all real values provided
(a) a $>$ b $>$ c
(b) a $>$ b $>$ c
(c) a $>$ c $>$ b
(d) a $<$ c $<$ b
[IIT 1984]

www.schootnotes 4 w.com

(29) If $a+b+c=0$, then the quadratic equation $3 a x^{2}+2 b x+c=0$ has
(a) at least one root in [0, 1]
(b) one root in [2, 3] and the other in [-2, -1]
(c) imaginary roots (d) none of these
[IIT 1983]
(30) The number of real solutions of the equation $|x|^{2}-3|x|+2=0$ is
(a) 4
(b) 1
(c) 3
(d) 2
[IIT 1982]
(31) If $\mathbf{a}>0, b>0$ and $c>0$, then both the roots of the equation $a x^{2}+b x+c=0$
(a) are real and negative
(b) have negative real parts
(c) none of these
[IIT 1980]
(32) Both the roots of the equation $(x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0$ are always
(a) positive
(b) negative
(d) none of these
[IIT 1980]
(33) If $l, \mathrm{~m}, \mathrm{n}$ are real, $l \neq \mathrm{m}$, then the roots of the equation
$(l-\mathrm{m}) \mathrm{x}^{2}-5(l+\mathrm{m}) \mathrm{x}-2(l-\mathrm{m})=0$ are
(a) real and equal
(b) complex
(c) real and unequal
d) none of these
[IIT 1979]
(34) The entire graph of the equation $y=x^{2}+k x-x+9$ is strictly above the X-axis if and only in
(a) $k<7$
(b) $-5<\mathrm{k}<7$
(c) $k>-5$
(d) none of these
[IIT 1979]
(35) If α and β are roots of the equation $a x^{2}+b x+c=0$, then $\left(1+\alpha+\alpha^{2}\right)\left(1+\beta+\beta^{2}\right)=$
(a) 0
(b) positive
(c) negative
(d) none of these
(36) If the two equations $a x^{2}+b x+c=0$ and $p x^{2}+q x+r=0$ have a common root, then the value of $(a q-b p)(b r-c q)$ is
(a) - (ar - cp $)^{2}$
(b) $(\mathrm{ap}-\mathrm{cr})^{2}$
(c) $(\mathrm{ac}-\mathrm{pr})^{2}$
(d) (ar-cp) ${ }^{2}$
(37) The set of values of p for which the roots of the equation $3 x^{2}+2 x+p(p-1)=0$ are of opposite signs is
(a) $(-\infty, 0)$
(b) $(0,1)$
(c) $(1, \infty)$
(d) $(0, \infty$
(38) If the roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are equal, then a, b, c are in
(a) H.P.
(b)
G. P.
(c)
A. P.
(d) none of these
(39) The value of p for which the difference between the roots of the equation $x^{2}+p x+8=0$ is 2 are
(a) ± 2
(b) ± 4
(c)
(d) ± 8
(40) If $a>0$, then $\sqrt{a+\sqrt{a+\sqrt{a+\ldots \ldots \infty}}}=$
(a) $\frac{1}{2} \sqrt{4 a-1}$
b) $\frac{1}{2}[1+\sqrt{4 a-1}]$
(c) $\frac{1}{2}[1-\sqrt{4 a-1}]$
(d) none of these
(41) If for the quadratic equation $a x^{2}+b x+c=0$, the difference of the roots is the same as their product, then the ratio of the roots is
(a) $\frac{a-b}{a+b}$
(b) $\frac{b-c}{b+c}$
(c) $\frac{c-a}{c+a}$
(d) none of these
(42) The integral values of m for which the roots of the equation $m x^{2}+(2 m-1) x+(m-2)=0$ are rational for rational k are given by
(a) $k(k+1)$
(b) $\frac{k^{2}-1}{4}$
(c) $\frac{k(k+2)}{4}$
(d) none of these

www.schootnotes 4 w.com

(43) If $x^{2}+6 x-27>0$ and $-x^{2}+3 x+4>0$, the x lies in the interval
(a) $(3,4)$
(b) [3, 4]
(c) $(-9,3] \cup[4,9)$
(d) (-9, 4)
(44) The roots of the equation $7^{\log _{7}\left(x^{2}-4 x+5\right)}=x-1$ are
(a) 2, 3
(b) 7
(c) -2,-3
(d) 2,-3
(45) If 2,3 are roots of the equation $2 x^{3}+m x^{2}-13 x+n=0$, then the values of m and n are
(a) $-5,-30$
(b) $-5,30$
(c) 5, 30
(d) none of these
(46) If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $a x^{2}+b x+c=0$, then
(a) $a^{2}+b^{2}-2 a c=0$
(b) $a^{2}-b^{2}+2 a c=0$
(c) $(a+c)^{2}=b^{2}+c^{2}$
(d) $(a-c)^{2}=b^{2}+c^{2}$
(47) If the equations $a x^{2}+2 c x+b=0$ and $a x^{2}+2 b x+c=0(b \neq c)$ have a common root, then $a+4 b+4 c=$
(a) 0
(b)
(c) -1
(d) none of these

Answers

$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	d	c	b	c	a	b	a	b	c	a	c	a	b	b	b	c	b	b	a

21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
\mathbf{a}	\mathbf{b}	\mathbf{b}	\mathbf{a}	\mathbf{d}	\mathbf{a}, \mathbf{b}	\mathbf{a}	\mathbf{c}, \mathbf{d}	\mathbf{a}	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{c}	\mathbf{b}	\mathbf{b}	\mathbf{d}	\mathbf{b}	\mathbf{a}	\mathbf{c}	\mathbf{b}

41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	a	a	a	b	b, c	a													

