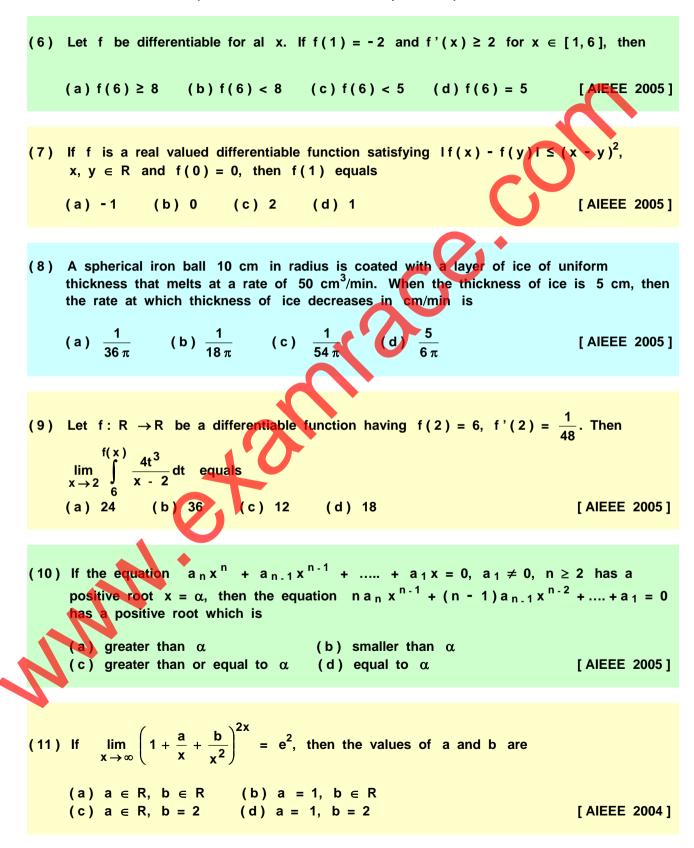
$$\frac{98 - \text{DIFFERENTIAL CALCULUS}}{(\text{Answers at the end of all questions})} \qquad \text{Page 1}$$

$$(1) \lim_{n \to \infty} \left[\frac{1}{n^2} \sec^2 \frac{1}{n^2} + \frac{2}{n^2} \sec^2 \frac{4}{n^2} + \dots + \frac{1}{n} \sec^2 1 \right] \text{ is}$$

$$(a) \frac{1}{2} \sec^2 (1 - b) \frac{1}{2} \csc^2 (1 - c) \tan^2 (1 - b) \frac{1}{2} \tan^2 (1 - b) \frac{1}{2} \cos^2 (1 - c) \tan^2 (1 - c) \frac{1}{2} \tan^2 (1 - b) \frac{1}{2} \tan^2 (1 - c) \frac{1}{2}$$



$$\frac{08 - DIFFERENTIAL CALCULUS}{(Answers at the end of all questions)} Page 3$$
(12) Let $f(x) = \frac{1 \cdot \tan x}{4x - \pi}$, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$. If $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

(a) 1 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) -1 [AIEEE 2004]
(13) If $x = e^{y} + e^{y + \dots, \infty}$, $x > 0$, then $\frac{dy}{dx}$ is

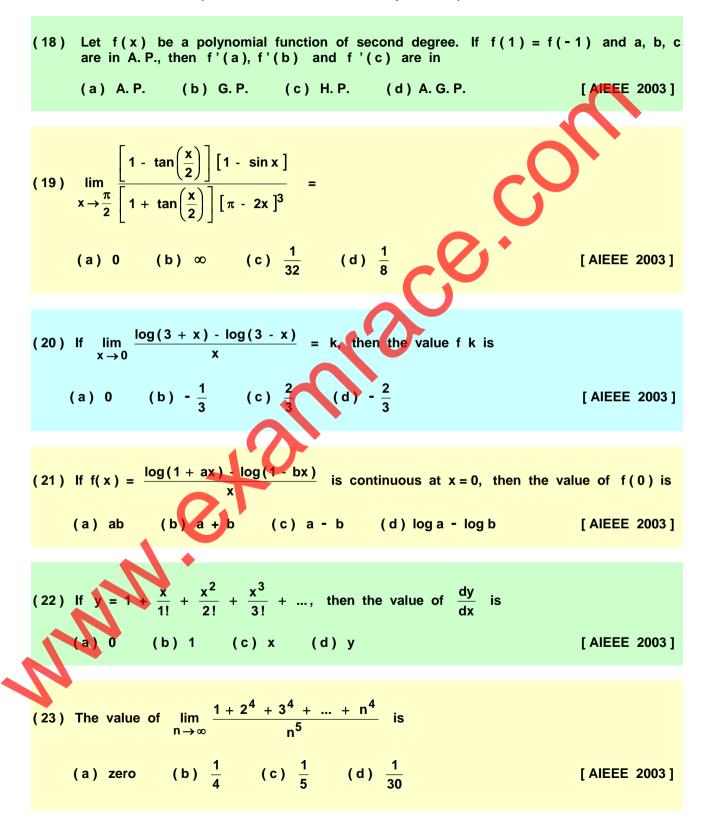
(a) $\frac{x}{1 + x}$ (b) $\frac{1}{x}$ (c) $\frac{1 - x}{x}$ (d) $\frac{r + x}{x}$ [AIEEE 2004]
(14) A point on the parabola $y^2 = 18x$ at which the ordinate increases at twice the rate of the abscissa is

(a) $(2, 4)$ (b) $(2, -4)$ (c) $\left(-\frac{9}{8}, \frac{9}{2}\right)$ (d) $\left(\frac{9}{8}, \frac{9}{2}\right)$ [AIEEE 2004]
(15) A function $y = f(x)$ has a second order derivative $f''(x) = 6(x - 1)$. If its graph passes through the joint (2, 1) and at that point the tangent to the graph is $y = 3x - 5$, then the unction is

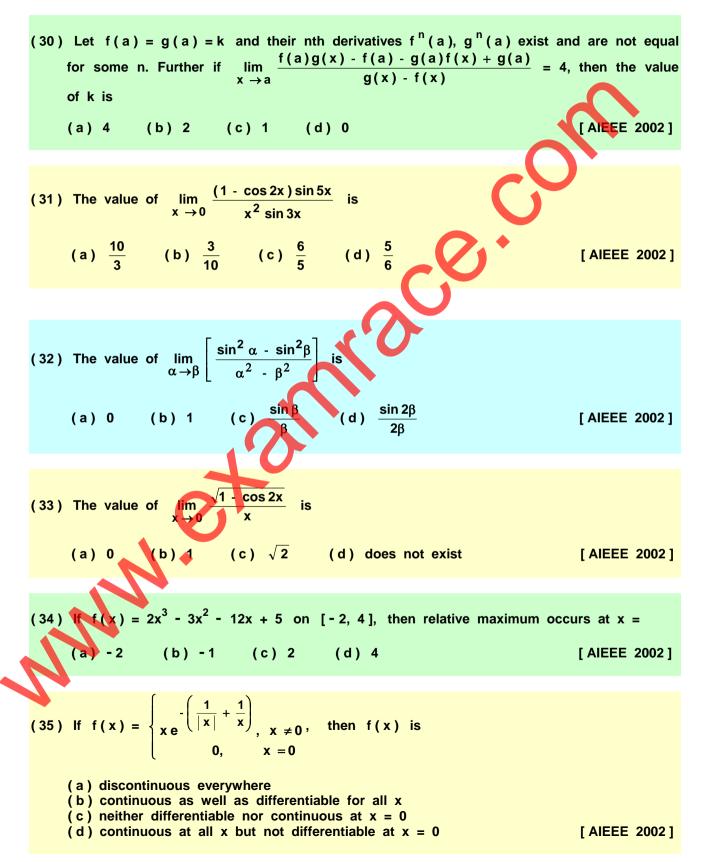
(a) $(x - 1)^2$ (b) $(x - 1)^3$ (c) $(x + 1)^3$ (d) $(x + 1)^2$ [AIEEE 2004]
(16) The uprimal to the curve $x = a(1 + \cos \theta)$, $y = a \sin \theta$ at ' θ ' always passes through the fixed point

(17) If $2a + 3b + 6c = 0$, then at least one root of the equation $ax^2 + bx + c = 0$ lies in the interval

(a) $(0, 1)$ (b) $(1, 2)$ (c) $(2, 3)$ (d) $(1, 3)$ [AIEEE 2004]

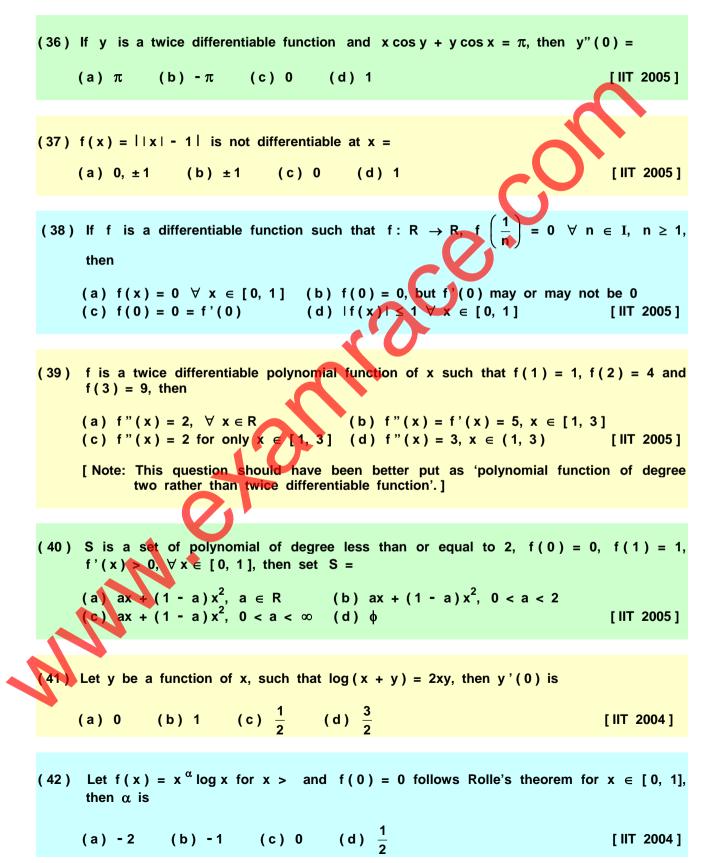


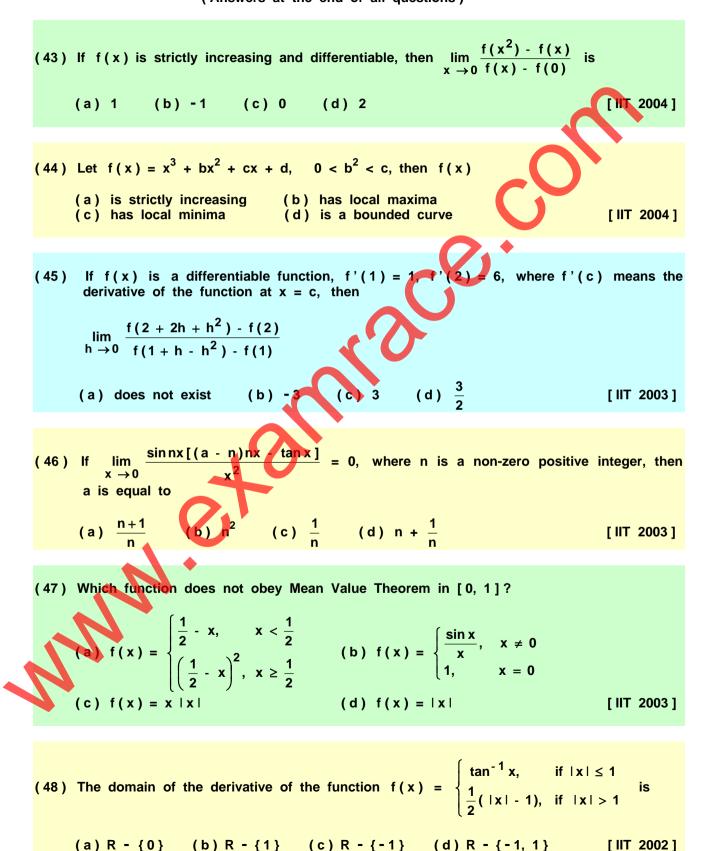
(24) If
$$f: \mathbb{R} \to \mathbb{R}$$
 satisfies $f(x + y) = f(x) + f(y)$, for all $x, y \in \mathbb{R}$ and $f(1) = 7$,
then the value of $\sum_{r=1}^{n} f'(r)$ is
(a) $\frac{7n}{2}$ (b) $7n(n+1)$ (c) $\frac{7(n+1)}{2}$ (d) $\frac{7n(n+1)}{2}$ [AIEEE 2003]
(25) The real number x when added to its inverse gives the minimum value of the sum at
 x equal to
(a) 2 (b) -2 (c) 1 (d) -1 [AIEEE 2003]
(26) If the function $f(x) = 2x^3 - 9ax^2 + 12a^2 + 14$ where $a > 0$, attains its maximum and
minimum at p and q respectively such that $p^2 = q$, then a equals
(a) 3 (b) 1 (c) 2 (c) 4 [AIEEE 2003]
(27) If $f(x) = x^n$, then the value of $Y(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} + \frac{f'''(1)}{3!} + ... + \frac{(-1)^n f^n(1)}{n!}$
is
(a) 2^n (b) 2^{p-1} (c) 1 (d) 0 [AIEEE 2003]
(28) If $x = t + t + 1$ and $y = sin(\frac{\pi}{2}t) + cos(\frac{\pi}{2}t)$, then at $t = 1$, the value of $\frac{dy}{dx}$ is
(a) $\frac{a}{2}$ (b) $-\frac{\pi}{6}$ (c) $\frac{\pi}{3}$ (d) $-\frac{\pi}{4}$ [AIEEE 2002]
(29) If $x = 3 cos \theta - 2 cos^3 \theta$ and $y = 3 sin \theta - 2 sin^3 \theta$, then the value of $\frac{dy}{dx}$ is
(a) $sin \theta$ (b) $cos \theta$ (c) $tan \theta$ (d) $cot \theta$ [AIEEE 2002]



08 - DIFFERENTIAL CALCULUS

(Answers at the end of all questions)





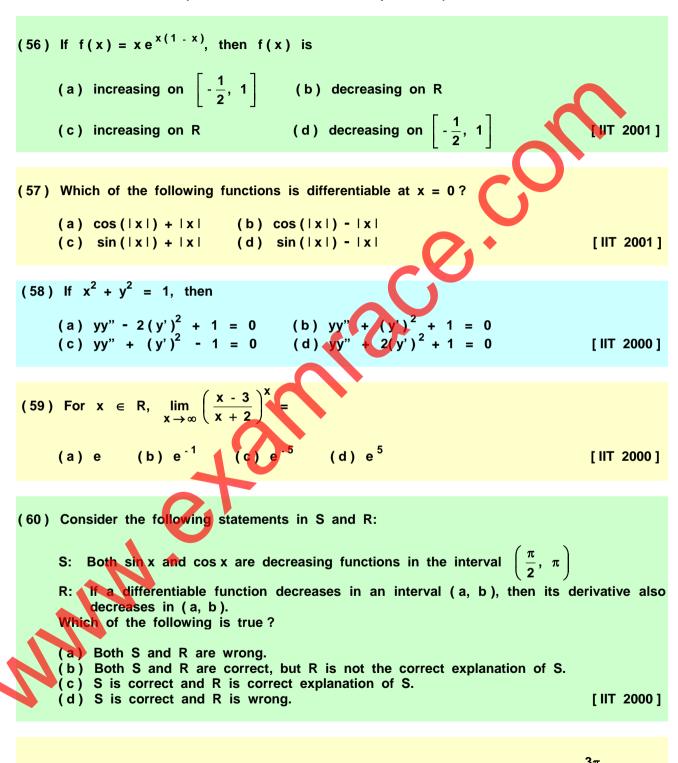
(49) The integer n for which $\lim_{x \to 0} \frac{(\cos x - 1)(\cos x - e^x)}{x^n}$ is a finite non-zero number is 2002] (a) 1 (b) 2 (c) 3 (d) 4 $\lim_{x \to 0} \left(\frac{f(1+x)}{f(1)} \right)^{\frac{1}{x}}$ (50) If f: $R \rightarrow R$ be such that f(1) = 3 and f'(1) = 6, then equals (a) 1 (b) $e^{\frac{1}{2}}$ (c) e^{2} (d) e^{3} [IIT 2002] (51) The point (s) on the curve $y^3 + 3x^2 = 12y$ where the tangent is vertical, is/(are) (a) $\left(\pm\frac{4}{\sqrt{3}}, -2\right)$ (b) $\left(\pm\sqrt{\frac{11}{3}}, 0\right)$ (c) (0, 0) (d) $\left(\pm\frac{4}{\sqrt{3}}, 2\right)$ [IIT 2002] (52) Let f: R \rightarrow R be a function defined by f(x) = {x, x³}. The set of all points where f(x) is not differentiable is (b) {-1,0} (c) {0,1} (d) {-1,0,1} [IIT 2001] (a) {-1, 1} (53) The left hand derivative of $f(x) = [x] \sin(\pi x)$ at x = k, where k is an integer, is (a) $(-1)^{k} (k-1)\pi$ (b) $(-1)^{k-1} (k-1)\pi$ (c) $(-1)^{k} k\pi$ (d) $(-1)^{k-1} k\pi$ [IIT 2001] The left hand derivative of $f(x) = [x] \sin(\pi x)$ at x = k, where k is an integer, is (a) $(-1)^{k}(k-1)\pi$ (b) $(-1)^{k-1}(k-1)\pi$ (c) $(-1)^{k}k\pi$ (d) $(-1)^{k-1}k\pi$ [IIT 2001] (55) $\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$ equals

(d) 1

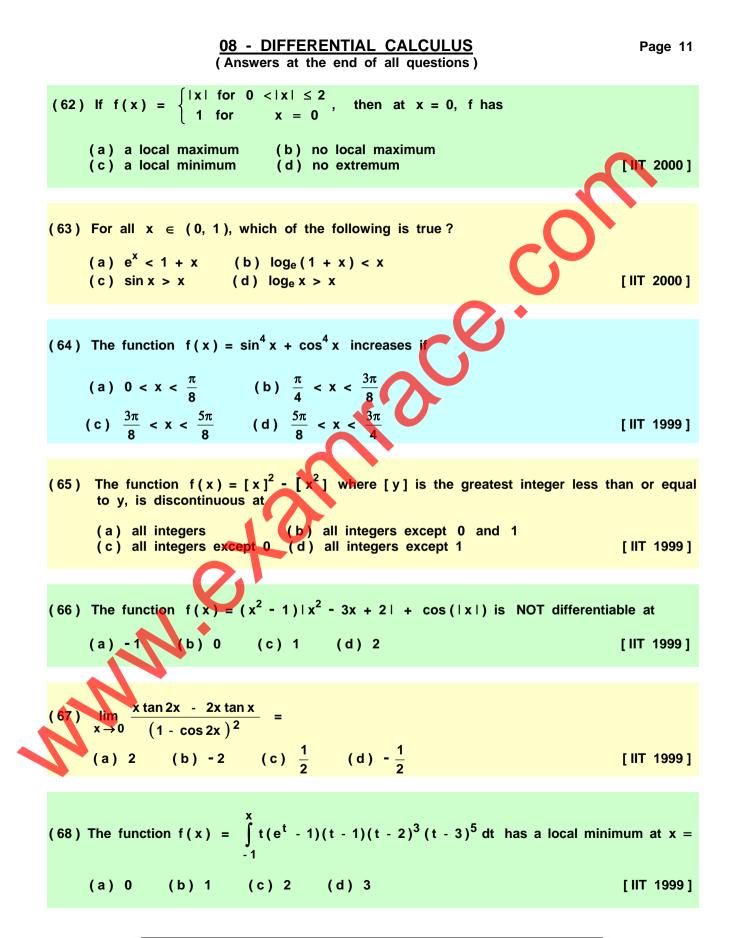
(a) - π (b) π (c) $\pi/2$

Page 9

[IIT 2001]

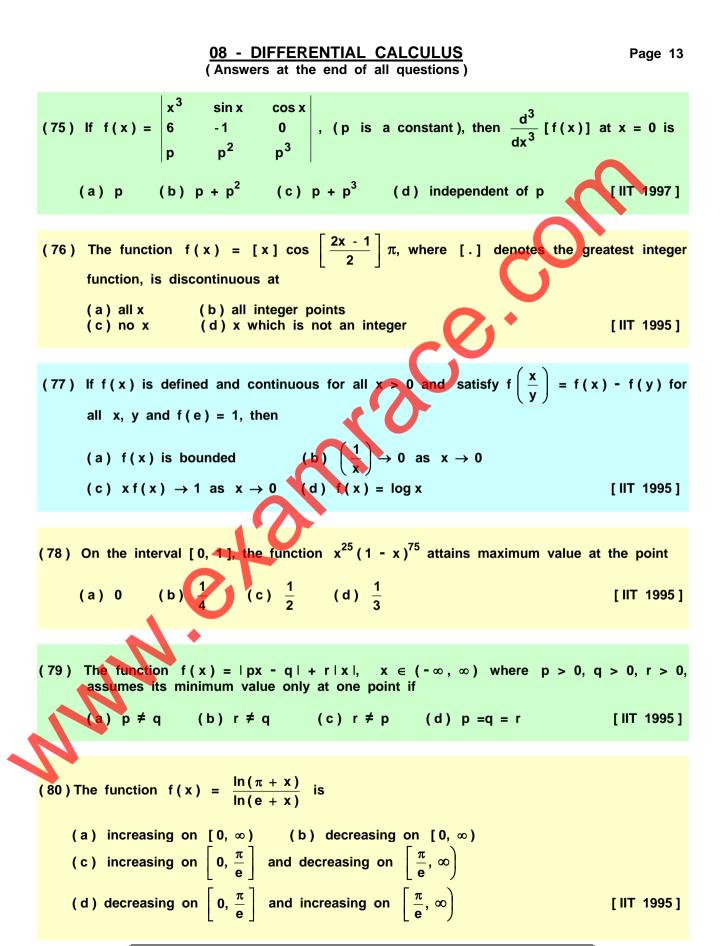


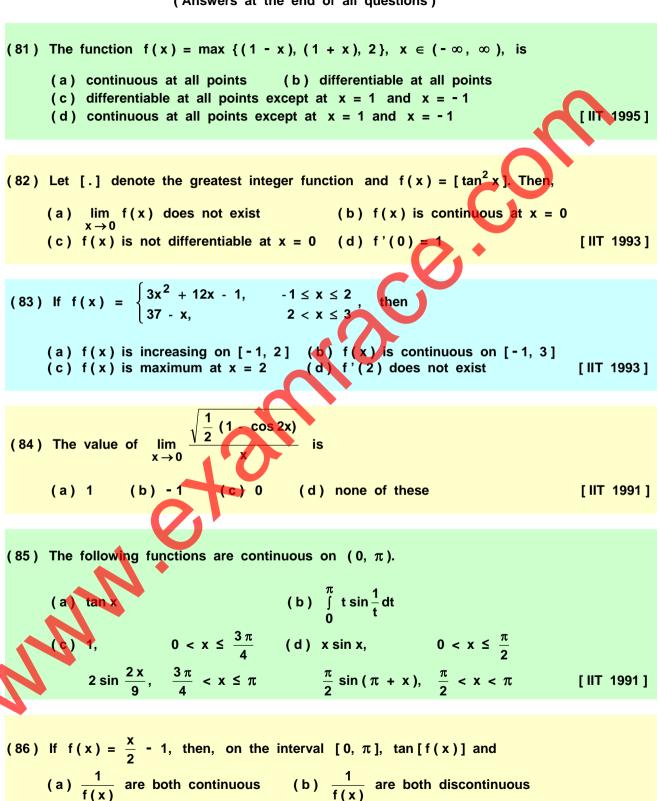
(61) If the normal to the curve y = f(x) at the point (3, 4) makes an angle $\frac{3\pi}{4}$ with the positive X-axis, then f'(3) =



(69)
$$\lim_{x \to 1} \frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}$$

(a) exists and is equal to $\sqrt{2}$ (b) exists and is equal to $-\sqrt{2}$
(c) does not exist because $x - 1 \to 0$
(d) does not exist because left hand limit \neq right hand limit
(70) If $\int_{0}^{x} f(t) dt = x + \int_{1}^{x} tf(t) dt$, then the value of $f(1)$ is
(a) $\frac{1}{2}$ (b) 0 (c) 1 (d) $-\frac{1}{2}$ [IIT 1998]
(71) Let $h(x) = \min [x, x^{2}]$, for every real number x, then
(a) h is continuous for all x (b) h if differentiable for all x
(c) h'(x) = 1 for all x > 1 (d) h is not differentiable at two
values of x [IIT 1998]
(72) If $h(x) = f(x) - [f(x)]^{2}$ for every real number x, then
(a) h is increasing whenever f is decreasing
(b) h is increasing whenever f is decreasing
(c) h h is decreasing with ever f is decreasing
(d) nothing can be said in general [IIT 1998]
(73) If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$, where $0 < x \le 1$, then in this interval
(h) both $f(x)$ and $g(x)$ are increasing functions
(c) $f(x)$ is an increasing function
(d) $g(x)$ is an increasing function
(f) both $f(x)$ and $g(x)$ are increasing functions
(c) $f(x)$ is an increasing function
(d) $g(x)$ is an increasing function
(d) $g(x)$ is an increasing function
(f) $y(x)$ is an increasing function
(f) $y(x)$ is an increasing function
(g) $y(x)$ is an increasing function
(h) $y(x)$ is an increasing fun





(c) $f^{-1}(x)$ are both continuous (d) $f^{-1}(x)$ are both discontinuous [IIT 1989]

08 - DIFFERENTIAL CALCULUS Page 15 (Answers at the end of all questions) (87) If $y^2 = P(x)$, a polynomial of degree 3, then $2 \frac{d}{dx} \left(y^3 \frac{d^2 y}{dx^2} \right)$ equals (a) P'''(x) + P'(x)
(b) P''(x)P'''(x)
(c) P(x)P'''(x)
(d) a constant [**IIT** 1988] (88) The function $f(x) = \begin{cases} x - 3 & x \ge 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4} & x < 1 \end{cases}$ is (a) continuous at x = 1 (b) differentiable at x = 1(c) continuous at x = 3 (d) differentiable at x = 3[IIT 1988] (89) The set of all points where the function f(x) =is differentiable is (c) $(-\infty, 0) \cup (0, \infty)$ (b) (0, ∞) (a) $(-\infty, \infty)$ (b) $(0, \infty)$ (d) $(0, \infty)$ (e) none of these (a) $(-\infty, \infty)$ [IIT 1987] (90) Let f and g be increasing and decreasing functions respectively from (0, ∞) to $(0, \infty)$. Let h(x) = f[g(x)]. If h(0) = 0, h(x) - h(1) is (a) always zero (b) always negative (c) always positive [IIT 1987] (d) strictly increasing (e) none of these Let P(x) = $a_0 + a_1x^2 + a_2x^4 + ... + a_nx^{2n}$ be a polynomial in a real variable x with (91) $0 < a_0 < a_1 < a_2 < \dots < a_n$. The function P(x) has (a) neither a maximum nor a minimum (b) only one maximum c) only one minimum (d) only one maximum and only one minimum [IIT 1986] (e) none of these The function $f(x) = 1 + |\sin x|$ is (a) continuous nowhere (b) continuous everywhere (c) differentiable (d) not differentiable at x = 0 (e) not differentiable at infinite number of points [IIT 1986] (93) Let [x] denote the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is

(a) continuous at x = 0 (b) continuous in (-1, 0) (c) differentiable at x = 1(d) differentiable in (-1, 1) (e) none of these [IIT 1986]

(94) If
$$f(x) = \frac{\sin[x]}{|x|}$$
, $[x] \neq 0$
= 0, $[x] = 0$,
where x] denotes the greatest integer less than or equal to x, then $\lim_{x\to 0} f(x)$ equals
(a) 1 (b) 0 (c) -1 (d) none of these [IIIT 1985]
(95) If $f(x) = x(\sqrt{x} - \sqrt{x+1})$, then
(a) $f(x)$ is continuous but not differentiable at $x = 0$
(b) $f(x)$ is indifferentiable at $x = 0$ (d) none of these [IIT 1985]
(96) $\lim_{n\to\infty} \left\{ \frac{1}{1-n^2} + \frac{2}{1-n^2} + \dots + \frac{n}{1-n^2} \right\}$ is equal to
(a) 0 (b) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) none of these [IIIT 1984]
(97) If $x + |y| = 2y$, then y as a function of x is
(a) defined for all real x (b) continuous at $x = 0$
(c) differentiable of all x (d) such that $\frac{dy}{dx} = \frac{1}{3}$ for $x < 0$ [IIT 1984]
(98) If $G(x) = -\sqrt{25-x^2}$, then $\lim_{x\to 1} \frac{G(x) - G(1)}{x-1}$ has the value
(a) $\frac{1}{24}$ (b) $\frac{1}{5}$ (c) $-\sqrt{24}$ (d) none of these [IIT 1983]
(98) If $G(x) = 2$, $f'(a) = 1$, $g(a) = -1$, $g'(a) = 2$, then the value of $\lim_{x\to a} \frac{g(x)f(a) - g(a)f(x)}{x-a}$ is
(a) -5 (b) $\frac{1}{5}$ (c) 5 (d) none of these [IIT 1983]
(100) The function $f(x) = \frac{\ln(1+ax) - \ln(1-bx)}{x}$ is not defined at $x = 0$. The value which should be assigned to f at $x = 0$, so that it is continuous at $x = 0$, is

(a) a - b (b) a + b (c) Ina + Inb [IIT 1983] (d) none of these

(101) The normal to the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$ at any point θ' is such that (a) it makes a constant angle with the X-axis (b) it passes through the origin (c) it is at a constant distance from the origin (d) none of these [IIT 1983 1 (102) If $y = a \ln x + bx^2 + x$ has its extremum values at x = -1 and x = 2, then (a) a = 2, b = -1 (b) $a = 2, b = -\frac{1}{2}$ (c) a = -2, $b = \frac{1}{2}$ (d) none of these [IIT 1983] (103) There exists a function f(x) satisfying f(0) = 1, f'(0) = -1, f(x) > 0 for all x and (a) f''(x) > 0 for all x -1_< f"(x) < 0 for all x (c) $-2 \le f''(x) \le -1$ for all x (d) 1 (x) < -2 for all x [IIT 1982] (104) For a real number y, let [v] denote the greatest integer less than or equal to y. Then the function $f(x) = \frac{\tan[\pi(x - \pi)]}{1 + [x]^2}$ is (a) discontinuous at some x (b) continuous at all x, but the derivative f"(x) does not exist for some x (c) f'(x) exists for all x, but the derivative f"(x) does not exist for some x (d) f^w(x) exists for all x [IIT 1981] $\frac{x - \sin x}{x + \cos^2 x}$, then lim f(x) is $x \to \infty$ f(x) =105) (b) ∞ (c) 1 (d) none of these (a) 0 [IIT 1979]

Page 18