(1) Show that $P(a, b+c), Q(b, c+a)$ and $R(c, a+b)$ are collinear.
(2) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line joining the mid-points of the diagonals of a quadrilateral are concurrent.
(3) If $(2,3),(4,5)$ and $(a, 2)$ are the vertices of a right triangle, find a.
[Ans: 3, 7]
(4) Find the circumcentre of the triangle with vertices $(-1,1),(0,-4)$ and (-1, - 5) and deduce that the circumcentre of the triangle whose vertices are (2, 3), (3, - 2) and (2,-3) is the origin.
[Ans: (-3,-2)]
(5) For which value of a would the area of a triangle with vertices (5, a), (2,5) and $(2,3)$ be 3 units?
[Ans: For any $a \in R$]
(6) Find the area of the triangle whose vertices are $\left(I^{2}, 21\right),\left(m^{2}, 2 m\right)$ and $\left(n^{2}, 2 n\right)$ if l $\neq \mathrm{m} \neq \mathrm{n}$.
[Ans: $I(I-m)(m-n)(n-1) \mid]$
(7) Find the area of the triangle whose vertices are (5, 3), (4,5) and (3,1) and show that the triangle whose vertices are (-2,2), (-3,4) and (-4, 0) has the same area.
[Ans: 3 units]
(8) Find the area of the triangle with vertices (5, 3), (4,5) and (3, 1) by shifting the origin at (5, 3).
[Ans: 3 units]
(9) Prove that the mid-point of the segment joining the two points dividing $\overline{\mathrm{AB}}$ from A in the ratios $\mathrm{m}: \mathrm{n}$ and $\mathrm{n}: \mathrm{m}$ is the mid-point of $\overline{\mathrm{AB}}$.
(10) If $P(1,2)$ and $Q(5,6)$ divide $A B$ from A in the ratios $2: 1$ and $-2: 1$, find the co-ordinates of A and B.
[Ans: A(-1, 0), B(2, 3)]
(11) If $(3,2),(4,5)$ and $(2,3)$ are three of the four vertices of a parallelogram, find the co-ordinates of the fourth vertex.
[Ans: (5, 4), (3, 6), (1, 0)]
(12) Show that the points $(2,3),(4,5)$ and $(3,2)$ can be the vertices of a rectangle and find the co-ordinates of the fourth vertex.
[Ans: (5, 4)]
(13) If the mid-points of the sides of a triangle are (4, 3), (5, -1) and (2, 7), find the vertices of the triangle.
[Ans: (7, - 5), (1,11), (3,3)]
(14) Find co-ordinates of the centroid, circumcentre and in-centre of the triangle whose vertices are $(3,4),(0,4)$ and $(3,0)$.

$$
\left[\text { Ans : }\left(2, \frac{8}{3}\right),\left(\frac{3}{2}, 2\right),(2,3)\right]
$$

(15) $A(3,4), B(0,-5)$ and $C(3,-1)$ are the vertices of triangle $A B C$. Determine the length of the altitude from A on $\overleftrightarrow{B C}$.
[Ans: 3 units]
(16) Points $B(4,1)$ and $C(2,5)$ are given. Find the equation of sets of all points P in the plane such that $m \angle B P C=\frac{\pi}{2}$. Find the set of all such points P.
[Ans: $\left.\left\{(x, y) \mid x^{2}+y^{2}-6 x+6 y+13=0\right\}-\{B, C\}\right]$
(17) If $A(0,1)$ and $B(2,9)$ are given, find C on $\overleftrightarrow{A B}$ such that $A B=3 A C$.
$\left[\right.$ Ans : $\left.\left(-\frac{2}{3},-\frac{5}{3}\right),\left(\frac{2}{3}, \frac{11}{3}\right)\right]$
(18) Points $\mathbf{A}\left(\mathbf{x}_{1}, \mathbf{x}_{1} \tan \theta_{1}\right), \mathbf{B}\left(x_{2}, x_{2} \tan \theta_{2}\right)$ and $\mathbf{C}\left(x_{3}, x_{3} \tan \theta_{3}\right)$ are given. If the circumcentre of triangle ABC is origin and its cenroid is (x, y), prove that

$$
\frac{x}{y}=\frac{\cos \theta_{1}+\cos \theta_{2}+\cos \theta_{3}}{\sin \theta_{1}+\sin \theta_{2}+\sin \theta_{3}} \quad\left(0<\theta_{1}, \theta_{2}, \theta_{3}<\frac{\pi}{2} \quad \text { and } \quad x_{1}, x_{2}, x_{3}>0\right)
$$

(19) Prove that the mid-points of the sides of any quadrilateral are the vertices of a parallelogram.
(20) If D and G are respectively the mid-point of side $\overline{B C}$ and the centroid in triangle $A B C$, then prove that
(i) $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$ and
(ii) $A B^{2}+B C^{2}+C A^{2}=3\left(G A^{2}+G B^{2}+G C^{2}\right)$
(21) Prove that the coordinates of all three vertices of an equilateral triangle cannot be rational numbers.
(22) If A, B, C and P are distinct non-collinear points of the plane, prove that Area of $\triangle P A B+$ Area of $\triangle P B C+$ Area of $\triangle P C A \geq$ Area of $\triangle A B C$
(23) If P is a point on the segment joining $A(3,5)$ and $B(-5,1)$ such that the area of $\triangle P O Q$ is 6 units where O is the origin and Q is the point $(-2,4)$, then find the coordinates of P.
$\left[\right.$ Ans: $\left.(1,4),\left(-\frac{19}{5}, \frac{8}{5}\right)\right]$
(24) Prove that the area of the triangle formed by the mid-points of the sides of the triangle is one-fourth that of the original triangle.
(25) $P(-5,1), Q(3,5), B(1,5)$ and $C(7,-2)$ are four points in the plane. The point A divides the segment $\overline{\mathrm{PQ}}$ in the ratio $\lambda: 1$ from P. If the area of triangle $A B C$ is 2 units, find the value of λ and also the co-ordinates of A.
$\left[\right.$ Ans : $\left.\lambda=7, \mathrm{~A}\left(2, \frac{9}{2}\right) ; \quad \lambda=\frac{31}{9}, \mathrm{~A}\left(\frac{6}{5}, \frac{41}{10}\right)\right]$
(26) If the co-ordinates of A, B and P are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and (x, y) respectively, and if $A-P-B$, then prove that $x+y$ lies between $x_{1}+y_{1}$ and $x_{2}+y_{2}$.
(27) Chord $\overline{C D}$ is parallel to the diameter $\overline{A B}$ of a given circle. P is any point on $\overline{A B}$. Prove that $P A^{2}+P B^{2}=P C^{2}+P D^{2}$.
(28) If P is a variable point on the circumcircle of an equilateral triangle $A B C$, prove that the value of $A P^{2}+B P^{2}+C P^{2}$ is independent of the position of the point P.
(29) A straight line l intersects the lines $\overleftrightarrow{B C}, \overleftrightarrow{C A}$ and $\overleftrightarrow{A B}$ along the sides of triangle $A B C$ respectively at P, Q and R. Prove that $\frac{B P}{P C} \cdot \frac{C Q}{Q A} \cdot \frac{A R}{R B}=1$.
(30) A variable rod of length l has one end A on X-axis and another end B on Y-axis. Prove that the equation of the set of points P which divide $\overline{A B}$ in the ratio $1: 2$ from A is $9 x^{2}+36 y^{2}=4 l^{2}$.
(31) If A is $(a \cos \alpha, a \sin \alpha)$ and B is $(a \cos \beta, a \sin \beta)$, then find $A B$.
$\left[\right.$ Ans : $\left.2\left|a \sin \left(\frac{\alpha-\beta}{2}\right)\right|\right]$
(32) $A(a, b)$ and $B(c, d)$ are two points. If $\overline{A B}$ subtends an angle of measure θ at the origin, then prove that $\cos \theta=\frac{a c+b d}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}$.
(33) If $P\left(a t^{2}, 2 a t\right), Q\left(\frac{a}{t^{2}}, \frac{-2 a}{t}\right)$ and $S(a, 0)$ are three points, show that $\frac{1}{S P}+\frac{1}{S Q}$ is independent of t.
(34) For which value of k would the points $(k, 2-2 k),(-k+1,2 k)$ and $(-4-k, 6-2 k)$ be distinct and collinear?
[Ans: -1]
(35) A is $(-4,0)$ and $B(4,0)$. Find the locus of a point P such that the difference of its distances from A and B is 4 .
[Ans: $\left.3 x^{2}-y^{2}=12\right]$
(36) If the distance between the centroid and incentre of the triangle with vertices (-36, 7), $(20,7)$ and $(0,-8)$ is $\frac{25}{3} \sqrt{205} k$, then find the value of k.
$\left[\right.$ Ans : $\left.k=\frac{1}{25}\right]$
(37) Prove that the locus of in-centre of a variable triangle whose one vertex is the origin and the other two vertices are on the co-ordinate axes is the set
$S=\left\{(x, y) \mid x^{2}=y^{2}, x, y \in R\right\}-\{(0,0)\}$.
(38) Prove that the locus of circumcentre of a variable triangle whose one vertex is the origin and the other two vertices are on the co-ordinate axes such that the side opposite to the origin is of constant length l is the set
$\mathrm{S}=\left\{(\mathrm{x}, \mathrm{y}) \mid 4 \mathrm{x}^{2}+4 \mathrm{y}^{2}=l^{2}\right\}-\left\{\left(\frac{l}{2}, 0\right),\left(-\frac{l}{2}, 0\right),\left(0, \frac{l}{2}\right),\left(0,-\frac{l}{2}\right)\right\}$.
(39) Prove that the locus of centroid of a variable triangle whose one vertex is the origin and the other two vertices are on the co-ordinate axes such that the side opposite to the origin is of constant length l is the set
$\mathrm{S}=\left\{(\mathrm{x}, \mathrm{y}) \mid 9 \mathrm{x}^{2}+9 \mathrm{y}^{2}=l^{2}\right\}-\left\{\left(\frac{l}{3}, 0\right),\left(-\frac{l}{3}, 0\right),\left(0, \frac{l}{3}\right),\left(0,-\frac{l}{3}\right)\right\}$.

