(1) Obtain the equations of the line through $A(1,2,1)$ and $B(2,3,-1)$ in vector and Cartesian forms.
$\left[\right.$ Ans : $\left.\bar{r}=(1,2,1)+k(1,1,-2), k \in R, \frac{x-1}{1}=\frac{y-2}{1}=\frac{z-1}{-2}\right]$
(2) Find the angle between $\frac{x-1}{2}=\frac{y-3}{5}=\frac{z+1}{-2} \quad$ and $\quad \frac{x+1}{2}=\frac{y-1}{1}=\frac{z+3}{3}$.

Ans: $\left.\cos ^{-1} \sqrt{\frac{3}{154}}\right]$
(3) Prove that the lines $\bar{r}=(1,2,6)+k(1,3,5), k \in R$ and $\bar{r}=(-1,3,5)$ $+k(2,1,1), k \in R$ are non-coplanar.
(4) Obtain the perpendicular distance of the line $\bar{r}=(2,1,5)+k(1,0,1), k \in R$ from P(1, 2, 1).
$\left[\right.$ Ans : $\left.\sqrt{\frac{11}{2}}\right]$
(5) Show that $\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z-2}{5}$ and $\frac{x}{3}=\frac{y-1}{2}=\frac{z-1}{1}$ are skew lines. Find the shortest distance between the.

Ans: $\frac{2}{\sqrt{3}}$
(6) Obtain the co-ordinates of the foot of perpendicular from (2, 4, -1) on $\bar{r}=(-5,-3,6)$ $+k(1,4,-9), k \in R$ and find the distance of the point from the line.
[Ans: (-4, 1, -3), 7]
(7) Obtain the vector and Cartesian forms of equations of the line through $\mathbf{A}(1,2,3)$ in the direction $(-1,1,2)$ and find the co-ordinates of the points on the line at a distance $\sqrt{6}$ from A.
$\left[\right.$ Ans : $\left.\bar{r}=(1,2,3)+k(-1,1,2), \frac{x-1}{-1}=\frac{y-2}{1}=\frac{z-3}{2}, k \in R,(0,3,5),(2,1,1)\right]$
(8) Determine which among the following pairs of lines are coincident, parallel, intersecting or skew.
(a) $\{(1,3,5)+k(-1,2,3) \mid k \in R\} \quad$ and $\{(1,3,1)+k(1,-2,-3) \mid k \in R\}$
(b) $\bar{r}=(2,1,3)+k(1,-1,1), k \in R$ and $\bar{r}=(3,0,4)+k(-1,1,-1), k \in R$
(c) $\frac{x}{2}=\frac{y}{-3}=\frac{z}{1} \quad$ and $\quad \frac{x-2}{3}=\frac{y-1}{5}=\frac{z+2}{2}$
(d) $\{(k+3,-k-1, k+1) \mid k \in R\}$ and $\{(2 k, 0,3 k-3) \mid k \in R\}$.
[Ans: (a) parallel (b) coincident (c) skew (d) intersecting]
(9) Find the (perpendicular) distance between the parallel lines $x-1=y+2=z-3$ and $x-2=y+3=z-5$.
$\left[\right.$ Ans : $\left.\sqrt{\frac{14}{3}}\right]$
(10) Find the co-ordinates of points on the line $\bar{r}=(1,2,1)+k(-1,-2,1), k \in R$ distant $\sqrt{6}$ units from $(2,4,0)$.
[Ans: (1, 2, 1), (3, 6, -1)]
(11) Find equation of the line through (3,-1,11) perpendicular to $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$.
[Ans: $\bar{n}=(3,-1,11)+k(1,-6,4), k \in R]$
(12) Find the shortest distance between $\bar{r}=(2,1,-2)+k(3,-5,2), k \in R$ and $\frac{x}{2}=\frac{y}{-3}=\frac{z}{1}$.
$\left[\right.$ Ans : $\left.\frac{1}{\sqrt{3}}\right]$
(13) Show that the angle between any two diagonals of a cube is $\cos ^{-1}(1 / 3)$.
[Note: This angle is $109^{\circ} 28^{\prime}$ which is the angle between any two $\mathrm{C}-\mathrm{H}$ bonds of methane.]
(14) If a line makes angles α, β, γ and δ with the diagonals of a cube, then show that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma+\sin ^{2} \delta=\frac{8}{3}$.
(15) If the direction cosines l, m, n of two lines satisfy $l+m+n=0$ and $l^{2}-\mathrm{m}^{2}+\mathrm{n}^{2}=0$, then show that the angle between the two lines is
(16) Show that the lines whose direction cosines are given by the equations $l+\mathbf{m}+\mathbf{n}=0$, $a l^{2}+\mathrm{bm}^{2}+\mathrm{cn}^{2}=0$ are
(i) perpendicular, if $a+b+c=0$ and
(ii) parallel, if $a^{-1}+b^{-1}+c^{-1}=0$.
(17) Show that the lines whose direction cosines are given by the equations $\mathbf{u} l+\mathrm{vm}+\mathrm{wn}=0$ and $\mathrm{fmn}+\mathrm{gn} l+\mathrm{h} l \mathrm{~m}=0$ are perpendicular if $\frac{\mathrm{f}}{\mathbf{u}}+\frac{\mathrm{g}}{\mathrm{v}}+\frac{\mathrm{h}}{\mathrm{w}}=0$.
(18) Prove that the lines $\mathbf{x}=a \mathrm{y}+\mathrm{b}=\mathbf{c z + d}$ and $\mathbf{x}=\alpha \mathbf{y}+\beta=\gamma \mathbf{z}+\delta$ are coplanar if $(\gamma-c)(a \beta-b \alpha)=(\alpha-a)(c \delta-d \gamma)$.
(19) Find the equation of the straight line perpendicular to both the lines $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z+2}{3}$ and $\frac{x+2}{2}=\frac{y-5}{-1}=\frac{z+3}{2} \quad$ and passing through their point of intersection.
[Ans: $=(2,3,1)+k(7,4,-5), k \in R]$
(20) Show that the shortest distances between a diagonal of a rectangular parallelopiped whose edges are a, b, c and the edges not meeting it are

$$
\frac{b c}{\sqrt{b^{2}+c^{2}}}, \frac{c a}{\sqrt{c^{2}+a^{2}}} \text { and } \frac{a b}{\sqrt{a^{2}+b^{2}}} \text {. }
$$

(21) If the line $L: x=a y+b=c z+d$ is perpendicular to the line M: $\mathbf{y}=\mathbf{a}^{\prime} \mathbf{x}+\mathrm{b}=\mathrm{c}^{\prime} \mathbf{z}+\mathrm{d}$, then prove that
$\mathbf{c c}\left(\mathrm{a}+\mathrm{a}^{\prime}\right)+\mathrm{aa}=0$.

