08 - LINE IN SPACE

- (1) Obtain the equations of the line through A(1, 2, 1) and B(2, 3, -1) in vector and Cartesian forms. Ans: $\bar{r} = (1, 2, 1) + k(1, 1, -2), k \in \mathbb{R}, \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-1}{-2}$ (2) Find the angle between $\frac{x-1}{2} = \frac{y-3}{5} = \frac{z+1}{-2}$ and $\frac{x+1}{2} = \frac{y-1}{-1} = \frac{z+3}{-3}$ $\left[\text{Ans: } \cos^{-1}\sqrt{\frac{3}{154}} \right]$ (3) Prove that the lines $\bar{r} = (1, 2, 6) + k(1, 3, 5)$, $k \in R$ and $\bar{r} = (-1, 3, 5)$ + k(2, 1, 1), $k \in R$ are non-coplanar. (4) Obtain the perpendicular distance of the line $\bar{r} = (2, 1, 5) + k(1, 0, 1)$, $k \in R$ from P(1, 2, 1). Ans: $\sqrt{\frac{11}{2}}$ and $\frac{x}{3} = \frac{y-1}{2} = \frac{z-1}{1}$ are skew lines. Find the <u>z - 2</u> (5) Show that - 3 shortest distance between the. Ans 6) Obtain the co-ordinates of the foot of perpendicular from (2, 4, -1) on r = (-5, -3, 6)+ k (1, 4, -9), $k \in R$ and find the distance of the point from the line. [Ans: (-4, 1, -3), 7] (7) Obtain the vector and Cartesian forms of equations of the line through A(1, 2, 3) in
 - (7) Obtain the vector and Cartesian forms of equations of the line through A (1, 2, 3) in the direction (-1, 1, 2) and find the co-ordinates of the points on the line at a distance $\sqrt{6}$ from A.

Ans:
$$\bar{r} = (1, 2, 3) + k(-1, 1, 2), \quad \frac{x-1}{-1} = \frac{y-2}{1} = \frac{z-3}{2}, \quad k \in \mathbb{R}, \ (0, 3, 5), \ (2, 1, 1)$$

PROBLEMS

- (14) If a line makes angles α , β , γ and δ with the diagonals of a cube, then show that $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma + \sin^2 \delta = \frac{8}{3}.$
- (15) If the direction cosines l, m, n of two lines satisfy l + m + n = 0 and $l^2 m^2 + n^2 = 0$, then show that the angle between the two lines is $\frac{\pi}{l}$.
- (16) Show that the lines whose direction cosines are given by the equations l + m + n = 0, $al^{2} + bm^{2} + cn^{2} = 0$ are
 - (i) perpendicular, if a + b + c = 0 and
 - (ii) parallel, if $a^{-1} + b^{-1} + c^{-1} = 0$.
- (17) Show that the lines whose direction cosines are given by the equations ul + vm + wn = 0 and fmn + gn l + h l m = 0 are perpendicular if $\frac{f}{u} + \frac{g}{v} + \frac{h}{w} = 0$.
- (18) Prove that the lines x = ay + b = cz + d and $x = \alpha y + \beta = \gamma z + \delta$ are coplanar if $(\gamma c)(a\beta b\alpha) = (\alpha a)(c\delta d\gamma)$.
- (19) Find the equation of the straight line perpendicular to both the lines $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z+2}{3}$ and $\frac{x+2}{2} = \frac{y-5}{-1} = \frac{z+3}{2}$ and passing through their point of intersection.

Ans:
$$r = (2, 3, 1) + k(7, 4, -5), k \in R$$

20)

Show that the shortest distances between a diagonal of a rectangular parallelopiped whose edges are a, b, c and the edges not meeting it are

$$rac{bc}{\sqrt{b^2 + c^2}}$$
, $rac{ca}{\sqrt{c^2 + a^2}}$ and $rac{ab}{\sqrt{a^2 + b^2}}$

(21) If the line L: x = ay + b = cz + d is perpendicular to the line M: y = a'x + b = c'z + d, then prove that cc'(a + a') + aa' = 0.