Limits Definitions

Precise Definition : We say $\lim_{x \to a} f(x) = L$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that whenever $0 < |x-a| < \delta$ then $|f(x) - L| < \varepsilon$.

"Working" Definition : We say $\lim_{x \to a} f(x) = L$ if we can make f(x) as close to *L* as we want by taking *x* sufficiently close to *a* (on either side of *a*) without letting x = a.

Right hand limit : $\lim_{x \to a^+} f(x) = L$. This has the same definition as the limit except it requires x > a.

Left hand limit : $\lim_{x \to a^-} f(x) = L$. This has the same definition as the limit except it requires x < a.

Limit at Infinity : We say $\lim_{x\to\infty} f(x) = L$ if we can make f(x) as close to *L* as we want by taking *x* large enough and positive.

There is a similar definition for $\lim_{x\to-\infty} f(x) = L$ except we require *x* large and negative.

Infinite Limit : We say $\lim_{x \to a} f(x) = \infty$ if we can make f(x) arbitrarily large (and positive) by taking x sufficiently close to a (on either side of a) without letting x = a.

There is a similar definition for $\lim_{x\to a} f(x) = -\infty$ except we make f(x) arbitrarily large and negative.

Relationship between the limit and one-sided limits

 $\lim_{x \to a} f(x) = L \implies \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L \qquad \lim_{x \to a^-} f(x) = \lim_{x \to a^-} f(x) = L \implies \lim_{x \to a} f(x) = L$ $\lim_{x \to a^+} f(x) \neq \lim_{x \to a^-} f(x) \implies \lim_{x \to a} f(x) \text{ Does Not Exist}$

Properties

Assume $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist and c is any number then,

1.
$$\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$$

2.
$$\lim_{x \to a} \left[f(x) \pm g(x) \right] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} \left[f(x)g(x) \right] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

4.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to a} \frac{f(x)}{\lim_{x \to a} g(x)}$$

5.
$$\lim_{x \to a} \left[f(x) \right]^n = \left[\lim_{x \to a} f(x) \right]^n$$

6.
$$\lim_{x \to a} \left[\sqrt[n]{f(x)} \right] = \sqrt[n]{\lim_{x \to a} f(x)}$$

Basic Limit Evaluations at $\pm \, \infty$

Note: $\operatorname{sgn}(a) = 1$ if a > 0 and $\operatorname{sgn}(a) = -1$ if a < 0. 1. $\lim_{x \to \infty} e^x = \infty$ & $\lim_{x \to -\infty} e^x = 0$ 2. $\lim_{x \to \infty} \ln(x) = \infty$ & $\lim_{x \to 0^-} \ln(x) = -\infty$ 3. If r > 0 then $\lim_{x \to \infty} \frac{b}{x^r} = 0$ 4. If r > 0 and x^r is real for negative x5. n even : $\lim_{x \to \pm \infty} x^n = \infty$ & $\lim_{x \to -\infty} x^n = -\infty$ 7. n even : $\lim_{x \to \pm \infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$ 8. n odd : $\lim_{x \to \infty} a x^n + \dots + b x + c = \operatorname{sgn}(a) \infty$

then
$$\lim_{x \to -\infty} \frac{b}{x^r} = 0$$

9. n odd: $\lim_{x \to -\infty} a x^n + \dots + c x + d = -\operatorname{sgn}(a) \infty$

Evaluation Techniques L'Hospital's Rule

Continuous Functions

If f(x) is continuous at a then $\lim_{x \to a} f(x) = f(a)$

Continuous Functions and Composition

f(x) is continuous at b and $\lim_{x\to a} g(x) = b$ then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b)$$

Factor and Cancel

$$\lim_{x \to 2} \frac{x^2 + 4x - 12}{x^2 - 2x} = \lim_{x \to 2} \frac{(x - 2)(x + 6)}{x(x - 2)}$$
$$= \lim_{x \to 2} \frac{x + 6}{x} = \frac{8}{2} = 4$$

Rationalize Numerator/Denominator

$$\lim_{x \to 9} \frac{3 - \sqrt{x}}{x^2 - 81} = \lim_{x \to 9} \frac{3 - \sqrt{x}}{x^2 - 81} \frac{3 + \sqrt{x}}{3 + \sqrt{x}}$$
$$= \lim_{x \to 9} \frac{9 - x}{\left(x^2 - 81\right)\left(3 + \sqrt{x}\right)} = \lim_{x \to 9} \frac{-1}{\left(x + 9\right)\left(3 + \sqrt{x}\right)}$$
$$= \frac{-1}{(18)(6)} = -\frac{1}{108}$$

Combine Rational Expressions

$$\lim_{h \to 0} \frac{1}{h} \left(\frac{1}{x+h} - \frac{1}{x} \right) = \lim_{h \to 0} \frac{1}{h} \left(\frac{x - (x+h)}{x(x+h)} \right)$$
$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{-h}{x(x+h)} \right) = \lim_{h \to 0} \frac{1}{x(x+h)} = -\frac{1}{x^2}$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} a \text{ is a number, } \infty \text{ or } -\infty$$
Polynomials at Infinity
$$p(x) \text{ and } q(x) \text{ are polynomials. To compute}$$

$$\lim_{x \to \pm \infty} \frac{p(x)}{q(x)} \text{ factor largest power of } x \text{ out of both}$$

$$p(x) \text{ and } q(x) \text{ and then compute limit.}$$

$$\lim_{x \to -\infty} \frac{3x^2 - 4}{5x - 2x^2} = \lim_{x \to -\infty} \frac{x^2 \left(3 - \frac{4}{x^2}\right)}{x^2 \left(\frac{5}{x} - 2\right)} = \lim_{x \to -\infty} \frac{3 - \frac{4}{x^2}}{\frac{5}{x} - 2} = -\frac{3}{2}$$
Piecewise Function
$$\lim_{x \to -2} g(x) \text{ where } g(x) = \begin{cases} x^2 + 5 & \text{if } x < -2 \\ 1 - 3x & \text{if } x \ge -2 \end{cases}$$
Compute two one sided limits,
$$\lim_{x \to -2^{+}} g(x) = \lim_{x \to -2^{-}} x^2 + 5 = 9$$

$$\lim_{x \to -2^{+}} g(x) = \lim_{x \to -2^{+}} 1 - 3x = 7$$

If $\lim_{x \to \infty} \frac{f(x)}{f(x)} = \frac{0}{2}$ or $\lim_{x \to \infty} \frac{f(x)}{f(x)} = \frac{\pm \infty}{1}$ then,

One sided limits are different so $\lim_{x\to -2} g(x)$ doesn't exist. If the two one sided limits had been equal then $\lim_{x\to -2} g(x)$ would have existed and had the same value.

Some Continuous Functions

Partial list of continuous functions and the values of *x* for which they are continuous.

- 1. Polynomials for all *x*.
- 2. Rational function, except for *x*'s that give division by zero.
- 3. $\sqrt[n]{x (n \text{ odd})}$ for all *x*.

4.
$$\sqrt[n]{x}$$
 (*n* even) for all $x \ge 0$.

- 5. e^x for all x.
- 6. $\ln x$ for x > 0.

- 7. $\cos(x)$ and $\sin(x)$ for all x.
- 8. tan(x) and sec(x) provided

$$x \neq \dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$

9. $\cot(x)$ and $\csc(x)$ provided $x \neq \dots, -2\pi, -\pi, 0, \pi, 2\pi, \dots$

Intermediate Value Theorem

Suppose that f(x) is continuous on [a, b] and let M be any number between f(a) and f(b). Then there exists a number c such that a < c < b and f(c) = M.