Limits
 Definitions

Precise Definition : We say $\lim _{x \rightarrow a} f(x)=L$ if for every $\varepsilon>0$ there is a $\delta>0$ such that whenever $0<|x-a|<\delta$ then $|f(x)-L|<\varepsilon$.
"Working" Definition : We say $\lim _{x \rightarrow a} f(x)=L$ if we can make $f(x)$ as close to L as we want by taking x sufficiently close to a (on either side of a) without letting $x=a$.

Right hand limit : $\lim _{x \rightarrow a^{+}} f(x)=L$. This has the same definition as the limit except it requires $x>a$.

Left hand limit : $\lim _{x \rightarrow a^{-}} f(x)=L$. This has the same definition as the limit except it requires $x<a$.

Limit at Infinity: We say $\lim _{x \rightarrow \infty} f(x)=L$ if we can make $f(x)$ as close to L as we want by taking x large enough and positive.

There is a similar definition for $\lim _{x \rightarrow-\infty} f(x)=L$ except we require x large and negative

Infinite Limit : We say $\lim _{x \rightarrow a} f(x)=\infty$ if we can make $f(x)$ arbitrarily large (and positive) by taking x sufficiently close to a (on either side of a) without letting $x=a$.

There is a similar definition for $\lim _{x \rightarrow a} f(x)=-\infty$ except we make $f(x)$ arbitrarily large and negative.

Relationship between the limit and one-sided limits

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=L \Rightarrow \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=L \quad \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x) \\
\lim _{x \rightarrow a^{+}} f(x) \neq \lim _{x \rightarrow a^{-}} f(x) \Rightarrow \lim _{x \rightarrow a} f(x) \text { Does Not Exist } \\
\text { Properties }
\end{gathered}
$$

Assume $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist and c is any number then,

1. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
2. $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$
4. $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ provided $\lim _{x \rightarrow a} g(x) \neq 0$
5. $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$
6. $\lim _{x \rightarrow a}[\sqrt[n]{f(x)}]=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$

Basic Limit Evaluations at $\pm \infty$

Note: $\operatorname{sgn}(a)=1$ if $a>0$ and $\operatorname{sgn}(a)=-1$ if $a<0$.

1. $\lim _{x \rightarrow \infty} \mathbf{e}^{x}=\infty$ \& $\lim _{x \rightarrow-\infty} \mathbf{e}^{x}=0$
2. $\quad \lim _{x \rightarrow \infty} \ln (x)=\infty \quad \& \quad \lim _{x \rightarrow 0^{-}} \ln (x)=-\infty$
3. If $r>0$ then $\lim _{x \rightarrow \infty} \frac{b}{x^{r}}=0$
4. If $r>0$ and x^{r} is real for negative x then $\lim _{x \rightarrow-\infty} \frac{b}{x^{r}}=0$
5. n even : $\lim _{x \rightarrow \pm \infty} x^{n}=\infty$
6. n odd : $\lim _{x \rightarrow \infty} x^{n}=\infty$ \& $\lim _{x \rightarrow-\infty} x^{n}=-\infty$
7. n even : $\lim _{x \rightarrow \pm \infty} a x^{n}+\cdots+b x+c=\operatorname{sgn}(a) \infty$
8. n odd : $\lim _{x \rightarrow \infty} a x^{n}+\cdots+b x+c=\operatorname{sgn}(a) \infty$
9. n odd : $\lim _{x \rightarrow-\infty} a x^{n}+\cdots+c x+d=-\operatorname{sgn}(a) \infty$

Continuous Functions

If $f(x)$ is continuous at a then $\lim _{x \rightarrow a} f(x)=f(a)$

Continuous Functions and Composition

$f(x)$ is continuous at b and $\lim _{x \rightarrow a} g(x)=b$ then
$\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(b)$
Factor and Cancel

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+4 x-12}{x^{2}-2 x} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+6)}{x(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x+6}{x}=\frac{8}{2}=4
\end{aligned}
$$

Rationalize Numerator/Denominator

$$
\begin{aligned}
& \lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{x^{2}-81}=\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{x^{2}-81} \frac{3+\sqrt{x}}{3+\sqrt{x}} \\
& =\lim _{x \rightarrow 9} \frac{9-x}{\left(x^{2}-81\right)(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{-1}{(x+9)(3+\sqrt{x})} \\
& =\frac{-1}{(18)(6)}=-\frac{1}{108}
\end{aligned}
$$

Combine Rational Expressions

$\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right)=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x-(x+h)}{x(x+h)}\right)$

$$
=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{-h}{x(x+h)}\right)=\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=-\frac{1}{x^{2}}
$$

L'Hospital's Rule
If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{ \pm \infty}{ \pm \infty}$ then,
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} a$ is a number, ∞ or $-\infty$
Polynomials at Infinity
$p(x)$ and $q(x)$ are polynomials. To compute
$\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}$ factor largest power of x out of both
$p(x)$ and $q(x)$ and then compute limit.
$\lim _{x \rightarrow-\infty} \frac{3 x^{2}-4}{5 x-2 x^{2}}=\lim _{x \rightarrow-\infty} \frac{x^{2}\left(3-\frac{4}{x^{2}}\right)}{x^{2}\left(\frac{5}{x}-2\right)}=\lim _{x \rightarrow-\infty} \frac{3-\frac{4}{x^{2}}}{\frac{5}{x}-2}=-\frac{3}{2}$
Piecewise Function
$\lim _{x \rightarrow-2} g(x)$ where $g(x)= \begin{cases}x^{2}+5 & \text { if } x<-2 \\ 1-3 x & \text { if } x \geq-2\end{cases}$
Compute two one sided limits,
$\lim _{x \rightarrow-2} g(x)=\lim _{x \rightarrow-2^{-}} x^{2}+5=9$
$\lim _{x \rightarrow-2^{+}} g(x)=\lim _{x \rightarrow-2^{+}} 1-3 x=7$
One sided limits are different so $\lim _{x \rightarrow-2} g(x)$ doesn't exist. If the two one sided limits had been equal then $\lim _{x \rightarrow-2} g(x)$ would have existed and had the same value.

Some Continuous Functions

Partial list of continuous functions and the values of x for which they are continuous.

1. Polynomials for all x.
2. Rational function, except for x 's that give division byzero.
3. $\sqrt[n]{x}(n$ odd) for all x.
4. $\sqrt[n]{x}$ (n even) for all $x \geq 0$.
5. \mathbf{e}^{x} for all x.
6. $\ln x$ for $x>0$.
7. $\cos (x)$ and $\sin (x)$ for all x.
8. $\tan (x)$ and $\sec (x)$ provided

$$
x \neq \cdots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \cdots
$$

9. $\cot (x)$ and $\csc (x)$ provided

$$
x \neq \cdots,-2 \pi,-\pi, 0, \pi, 2 \pi, \cdots
$$

Intermediate Value Theorem

Suppose that $f(x)$ is continuous on $[a, b]$ and let M be any number between $f(a)$ and $f(b)$. Then there exists a number c such that $a<c<b$ and $f(c)=M$.

