- (1) If a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ intersects the major axis in T and minor axis in T', then prove that $\frac{a^2}{CT^2} \frac{b^2}{CT^{'2}} = 1$, where C is the centre of the hyperbola.
- (2) Show that the angle between two asymptotes of the hyperbola $x^2 2y^2 = 1$ is $\tan^{-1}(2\sqrt{2})$.
- (3) Prove that the product of the lengths of the perpendicular line segments from any point on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ to its asymptotes is $\frac{a^2b^2}{a^2 + b^2}$.
- (4) Find the co-ordinates of foci, equations of directrices, eccentricity and length of the latus-rectum for the following hyperbotas:
 (i) 25x² 144y² = 3600,
 (ii) x² y² = 16.

Ans: (i) (0, ±13), $y = \pm \frac{25}{13}$, $e = \frac{13}{5}$, $\frac{288}{5}$ (ii) (±4 $\sqrt{2}$, 0), $x = \pm 2\sqrt{2}$, $e = \sqrt{2}$, 8

- (5) If the eccentricities of the hyperbolas $\frac{x^2}{a^2} \frac{y^2}{b^2} = \pm 1$ are e_1 and e_2 respectively, then prove that $e_1^2 + e_2^{-2} = 1$.
- (6) Prove that the equation of the chord of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ joining $P(\alpha)$ and $Q(\beta)$ is $\frac{x}{a} \cos \frac{\alpha \beta}{2} \frac{y}{b} \sin \frac{\alpha + \beta}{2} = \cos \frac{\alpha + \beta}{2}$. If this chord passes through the focus (ae, 0), then prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{1 e}{1 + e}$
- If $\theta + \phi = 2\alpha$ (constant), then prove that all the chords of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ joining the points P(θ) and Q(ϕ) pass through a fixed point.
- (8) If the chord \overline{PQ} of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ subtends a right angle at the centre C, then prove that $\frac{1}{CP^2} + \frac{1}{CQ^2} = \frac{1}{a^2} \frac{1}{b^2}$ (b > a).

- (9) For a point on the hyperbola, $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, prove that $SP \cdot S'P = CP^2 a^2 + b^2$.
- (10) Find the equation of the common tangent to the hyperbola $3x^2 4y^2 = 12$ and parabola $y^2 = 4x$.

[Ans: $\pm y = x + 1$]

(11) Find the condition for the line $x \cos \alpha + y \sin \alpha = p$ to be a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$

[Ans: $p^2 = a^2 \cos^2 \alpha - b^2 \sin^2 \alpha$]

(12) Find the equation of a common tangent to the hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ (a > b).

[Ans: $x - y = \pm \sqrt{a^2 + b^2}$, $x + y = \pm \sqrt{a^2 - b^2}$]

(13) Find the equation of the hyperbola passing through the point (1, 4) and having asymptotes $y=\pm 5x$.

[Ans: $25x^2 - y^2 = 9$]

- Prove that the area of the triangle formed by the asymptotes and any tangent of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is ab.
- (15) A line passing through the focus S and parallel to an asymptote intersects the hyperbola at the point P and the corresponding directrix at the point Q. Prove that SQ = 2 SP.

- (16) K is the foot of perpendicular to an asymptote from the focus S of the rectangular hyperbola. Prove that the hyperbola bisects $\overline{\mathsf{SK}}$.
- (17) A line passing through a point P on the hyperbola and parallel to an asymptote intersects the directrix in K. Prove that PK = SP.
- (18) If the chord of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ joining the points α and β subtend the right angle at the vertex (a, 0), then prove that $a^2 + b^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} = 0$.
- (19) Find the condition that the line lx + my + n = 0 may be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and find the co-ordinates of the point of contact.

$$\left[\text{ Ans: } a^2 l^2 - b^2 m^2 = n^2, \quad \left(-\frac{a^2 l}{n}, \frac{b^2 m}{n} \right) \right]$$

- (20) Prove that the segment of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ between the point of contact and its intersection with a directrix subtends a right angle at the corresponding focus.
- (21) Find the equations of the tangents drawn from the point (-2, -1) to the hyperbola $2x^2 3y^2 = 6$.

 [Ans: 3x y + 5 = 0, x y + 1 = 0]
- (22) If the line $y = mx + \sqrt{a^2m^2 b^2}$ touches the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $P(\alpha)$, then prove that $\sin \alpha = \frac{b}{am}$.
- (23) If the lines 2y x = 14 and 3y x = 9 are tangential to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then find the values of a^2 and b^2 .

[Ans:
$$a^2 = 288$$
, $b^2 = 33$]

- (24) The tangent and normal at a point P on the rectangular hyperbola $x^2 y^2 = 1$ cut off intercepts a_1 , a_2 on the X-axis and b_1 , b_2 on the Y-axis. Prove that $a_1 a_2 = b_1 b_2$.
- (25) Prove that the locus of intersection of tangents to a hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, which meet at a constant angle β , is the curve $(x^2 + y^2 + b^2 a^2)^2 = 4 \cot^2 \beta (a^2 y^2 b^2 x^2 + a^2 b^2).$
- (26) Prove that the equation of the chord of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ which has its mid-point at (h, k) is $\frac{hx}{a^2} \frac{ky}{b^2} = \frac{h^2}{a^2} \frac{k^2}{b^2}$
- (27) If a rectangular hyperbola circumscribes a triangle, then prove that it also passes through the orthocentre of the triangle.
- (28) If a circle and the rectangular hyperbola $xy = c^2$ meet in the four points " t_1 ", " t_2 ", " t_3 " and " t_4 ", then prove that
 - (i) product of the abscissae of the four points = the product of their ordinates = c^4 ,
 - (ii) the centre f the circle through the points " t_1 ", " t_2 ", " t_3 " is

$$\left\{ \frac{c}{2} \left(t_1 + t_2 + t_3 + \frac{1}{t_1 t_2 t_3} \right), \ \frac{c}{2} \left(\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + t_1 t_2 t_3 \right) \right\}$$

- (29) For a rectangular hyperbola $xy = c^2$, prove that the locus of the mid-points of the chords of constant length 2d is $(x^2 + y^2)(xy c^2) = d^2xy$.
- (30) If P₁, P₂ and P₃ are three points on the rectangular hyperbola $xy = c^2$, whose abscissae are x_1 , x_2 and x_3 , then prove that the area of the triangle P₁P₂P₃ is

$$\left.\frac{c^2}{2}\right|\frac{(x_1-x_2)(x_2-x_3)(x_3-x_1)}{x_1\,x_2\,x_3}\bigg|.$$