(1) If a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ intersects the major axis in $T$ and minor axis in $T$, then prove that $\frac{a^{2}}{C T^{2}}-\frac{b^{2}}{C T^{2}}=1$, where $C$ is the centre of the hyperbola.
(2) Show that the angle between two asymptotes of the hyperbola $x^{2}-2 y^{2}=1$ is $\tan ^{-1}(2 \sqrt{2})$.
(3) Prove that the product of the lengths of the perpendicula line segments from any point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to its asymptotes is $\frac{a^{2} b^{2}}{a^{2}+b^{2}}$.
(4) Find the co-ordinates of foci, equations of directrices, eccentricity and length of the latus-rectum for the following hyperbolas:
(i) $25 x^{2}-144 y^{2}=-3600$,
$y^{2}=16$.

Ans : (i) $(0, \pm 13), y= \pm \frac{25}{13}, e=\frac{13}{5}, \frac{288}{5} \quad$ (ii) $\left.( \pm 4 \sqrt{2}, 0), x= \pm 2 \sqrt{2}, e=\sqrt{2}, 8\right]$
(5) If the eccentricities of the hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}= \pm 1$ are $e_{1}$ and $e_{2}$ respectively, then prove that $\mathrm{e}_{1}{ }^{2}+\mathrm{e}_{2}^{-2}=1$.
(6) Prove that the equation of the chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ joining $P(\alpha)$ and $Q(\beta)$ is $\frac{x}{a} \cos \frac{\alpha-\beta}{2}-\frac{y}{b} \sin \frac{\alpha+\beta}{2}=\cos \frac{\alpha+\beta}{2}$. If this chord passes through the focus (ae, 0), then prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{1-e}{1+e}$

If $\theta+\phi=2 \alpha$ (constant), then prove that all the chords of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ joining the points $P(\theta)$ and $Q(\phi)$ pass through a fixed point.
(8) If the chord $\overline{P Q}$ of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ subtends a right angle at the centre $C$, then prove that $\frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{a^{2}}-\frac{1}{b^{2}} \quad(b>a)$.
(9) For a point on the hyperbola, $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, prove that $S P \cdot S^{\prime} P=C P^{2}-a^{2}+b^{2}$.
(10) Find the equation of the common tangent to the hyperbola $3 x^{2} \leqslant 4 y^{2} \Rightarrow 12$ and parabola $y^{2}=4 x$.
[ Ans: $\pm \mathrm{y}=\mathrm{x}+1$ ]
(11) Find the condition for the line $x \cos \alpha+y \sin \alpha=p$ to be tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
[Ans: $\mathrm{p}^{2}=\mathrm{a}^{2} \cos ^{2} \alpha-\mathrm{b}^{2} \sin ^{2} \alpha$ ]
(12) Find the equation of a common tangent to the hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1(a>b)$
[ Ans: $x-y= \pm \sqrt{a^{2}-b^{2}}, \quad x+y= \pm \sqrt{a^{2}-b^{2}}$ ]
(13) Find the equation of the hyperbola passing through the point (1, 4) and having asymptotes $y= \pm 5 x$.

Ans: $\left.25 x^{2}-y^{2}=9\right]$
(14) Prove that the area of the triangle formed by the asymptotes and any tangent of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $a b$.
(15) A line passing through the focus $S$ and parallel to an asymptote intersects the hyperbola at the point $P$ and the corresponding directrix at the point $Q$. Prove that $S Q=2 S P$.
(16) $K$ is the foot of perpendicular to an asymptote from the focus $S$ of the rectangular hyperbola. Prove that the hyperbola bisects $\overline{\mathbf{S K}}$.
(17) A line passing through a point $P$ on the hyperbola and parallel to an asymptote intersects the directrix in K. Prove that PK = SP.
(18) If the chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ joining the points $\alpha$ and $\beta$ subtend the right angle at the vertex $(a, 0)$, then prove that $a^{2}+b^{2} \cot \frac{\alpha}{2} \cot \frac{\beta}{2}=0$.
(19) Find the condition that the line $l x+m y+n=0$ may be a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and find the co-ordinates of the point of contact.
$\left[\right.$ Ans : $\left.a^{2} l^{2}-b^{2} m^{2}=n^{2},\left(-\frac{a^{2} l}{n}, \frac{b^{2} m}{n}\right)\right]$
(20) Prove that the segment of the tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ between the point of contact and its intersection with a directrix subtends a right angle at the corresponding focus.
(21) Find the equations of the tangents drawn from the point (-2, -1) to the hyperbola $2 x^{2}-3 y^{2}=6$.
[Ans: $3 x-y+5=0, x-y+1=0$ ]
(22) If the line $y=m x+\sqrt{a^{2} m^{2}-b^{2}}$ touches the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\mathbf{P}(\alpha)$, then prove that $\sin \alpha=\frac{b}{\mathbf{a m}}$.
(23) If the lines $2 y-x=14$ and $3 y-x=9$ are tangential to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, then find the values of $a^{2}$ and $b^{2}$.
[ Ans: $a^{2}=288, b^{2}=33$ ]
(24) The tangent and normal at a point $P$ on the rectangular hyperbola $x^{2}-y^{2}=1$ cut off intercepts $a_{1}, a_{2}$ on the $X$-axis and $b_{1}, b_{2}$ on the $Y$-axis. Prove that $a_{1} a_{2}=b_{1} b_{2}$.
(25) Prove that the locus of intersection of tangents to a hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, which meet at a constant angle $\beta$, is the curve
$\left(x^{2}+y^{2}+b^{2}-a^{2}\right)^{2}=4 \cot ^{2} \beta\left(a^{2} y^{2}-b^{2} x^{2}+a^{2} b^{2}\right)$.
(26) Prove that the equation of the chord of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ which has its mid-point at $(h, k)$ is $\frac{h x}{a^{2}}-\frac{k y}{b^{2}}=\frac{h^{2}}{a^{2}}-\frac{k^{2}}{b^{2}}$
(27) If a rectangular hyperbola circumscribes a triangle, then prove that it also passes through the orthocentre of the triangle
(28) If a circle and the rectangular hyperbola $x y=c^{2}$ meet in the four points " $\mathrm{t}_{1}$ ", " $\mathrm{t}_{2}$ ", " $\mathrm{t}_{3}$ " and " $\mathrm{t}_{4}$ ", then prove that
(i) product of the abscissae of the four points $=$ the product of their ordinates $=c^{4}$,
(ii) the centre $f$ the circle through the points " $\mathrm{t}_{1}$ ", " $\mathrm{t}_{2}$ ", " $\mathrm{t}_{3}$ " is

$$
\left\{\frac{c}{2}\left(t_{1}+t_{2}+t_{3}+\frac{1}{t_{1} t_{2} t_{3}}\right), \frac{c}{2}\left(\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}+t_{1} t_{2} t_{3}\right)\right\}
$$

(29) For a rectangular hyperbola $x y=c^{2}$, prove that the locus of the mid-points of the chords of constant length $2 d$ is $\left(x^{2}+y^{2}\right)\left(x y-c^{2}\right)=d^{2} x y$.
(30) If $P_{1}, P_{2}$ and $P_{3}$ are three points on the rectangular hyperbola $x y=c^{2}$, whose abscissae are $x_{1}, x_{2}$ and $x_{3}$, then prove that the area of the triangle $P_{1} P_{2} P_{3}$ is
$\frac{c^{2}}{2}\left|\frac{\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)\left(x_{3}-x_{1}\right)}{x_{1} x_{2} x_{3}}\right|$.

