<u>05 - ELLIPSE</u>

- (1) The end-points A and B of AB are on the X- and Y-axis respectively. If AB = a + b, a > 0, b > 0, $a \neq b$ and P divides \overline{AB} from A in the ratio b : a, then show that P lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- (2) If the feet of the perpendiculars drawn to the tangent at any point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from foci S and S' are L and L' respectively, then show that $SL \cdot S'L' = b^2$.
- (3) Prove that the line segment of any tangent, between the tangents at the end-points of the major axis, forms a right angle at either focus of the ellipse.
- (4) Show that the equation of the chord joining the points $P(\alpha)$ and $Q(\beta)$ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{x}{a}\cos\frac{\alpha+\beta}{2} + \frac{y}{b}\sin\frac{\alpha+\beta}{2} = \cos\frac{\alpha-\beta}{2}$.

(5) If the chord joining the points P(α) and Q(β) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the focus (ae, 0), then prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{e-1}{e+1}$.

(6) If the chord joining the points $P(\alpha)$ and $Q(\beta)$ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ subtends a right angle at the centre, then show that $\tan \alpha \cdot \tan \beta + \frac{a^2}{b^2} = 0$ and if it forms a right angle at the vertex (a, 0), then show that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \frac{b^2}{a^2} = 0$.

(7) If the difference of eccentric angles of the points P and Q on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{\pi}{2}$ and $\stackrel{\leftrightarrow}{PQ}$ cuts intercepts of length c and d on the axes, then prove that $\frac{a^2}{c^2} + \frac{b^2}{d^2} = 2$.

- (8) If two radii \overline{CP} and \overline{CQ} of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are perpendicular, then prove that $\frac{1}{CP^2} + \frac{1}{CQ^2} = \frac{1}{a^2} + \frac{1}{b^2}$, where C is the centre of the ellipse. (9) Find the equations of the tangents drawn to the ellipse, $9x^2 + 16y^2 = 144$ from the point (2, 3). [Ans: x + y - 5 = 0, y - 3 = 0] (10) Find the equations of the tangents of the ellipse $9x^2 + 4y^2 = 36$ parallel to the line y = 2x. Also obtain the co-ordinates of the contact points. [Ans: 2x - y + 5 = 0 at $\left(-\frac{8}{5}, \frac{9}{5}\right)$ and 2x - y - 5 = 0 at $\left(-\frac{8}{5}, -\frac{9}{5}\right)$]
- (11) Show that the tangents at the end-points of a focal chord of the ellipse intersect on the directrix.
- (12) Show that the point of intersection of the tangents to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the points whose eccentric angles differ by $\frac{\pi}{2}$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$.

(13.) The difference of the eccentric angles of the points P and Q on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{\pi}{2}$. If the tangents at P and Q intersect in R, then prove that $\frac{x^2}{CR}$ and \overline{PQ} bisect each other.

(14) P and Q are coherent points on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and its auxiliary circle. Show that the tangents to the ellipse at P and the circle at Q intersect on the X-axis. (a > b)

- Page 3
- (15) If the lengths of the perpendicular line-segments from the centre to two mutually orthogonal tangents of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are p_1 and p_2 , then prove that $p_1^2 + p_2^2 = a^2 + b^2$.
- (16) A tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersects the axes in C and D respectively and touches the ellipse at mid-point of \overline{CD} in the first quadrant. Find its equation.
 - $\left[\text{Ans:} \frac{x}{a} + \frac{y}{b} = \sqrt{2} \right]$
- (17) If the perpendicular distance of the focus S from the tangent at a point P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is p, then prove that SP = $\frac{2ap^2}{b^2 + p^2}$.
- (18) B(0, b) is one end-point of the chord of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) passing through the focus S'. If P is another end-point, then show that the slope of \overline{CP} is $\frac{(1 - e^2)^{\frac{3}{2}}}{2e}$, where C is the centre of the ellipse.
- (19) The foot of the perpendicular from a point P on ellipse to the major axis is M. If PM intersects the tangent at the end-point of a latus rectum in R, then prove that MR = SP.
- 20) If the line containing a focal-chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersects the auxiliary circle in Q and Q', then prove that SQ × SQ' = b^2 .
- (21) Prove that if the tangent at a point P to the ellipse intersects a directrix at F, then \overrightarrow{PF} forms a right angle at the corresponding focus.

05 - ELLIPSE

- (22) The tangent at point P of an ellipse intersects the major axis in T. The line passing through T and perpendicular to major axis $\overrightarrow{AA'}$, intersects \overrightarrow{AP} and $\overrightarrow{A'P}$ in Q and Q' respectively. Show that T is the mid-point of $\overrightarrow{QQ'}$.
- (23) The tangent at point P of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ intersects the axes in T and T' respectively. If R is the foot of perpendicular from the centre C to the tangent, then prove that TT' \cdot PR = $a^2 b^2$.
- (24) Find the condition that the line lx + my + n = 0 may be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and find the co-ordinates of its point of contact.

Ans:
$$a^2l^2 + b^2m^2 = n^2$$
, $\left(-\frac{a^2l}{n}, \frac{b^2m}{n}\right)$

- (25) If the tangent at any point of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with centre C meets the major axis in T and minor axis in T', then prove that $\frac{a^2}{CT^2} + \frac{b^2}{CT'^2} = 1$ (a > b).
- (26) Find the condition for the line $x \cos \alpha + y \sin \alpha = p$ to be a tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1.$

Ans: $p^2 cosec^2 \alpha = a^2 cot^2 \alpha + b^2$]

- P and Q are corresponding points on an ellipse and its auxiliary circle respectively. If the tangent at P to the ellipse meets the major axis in T, then show that QT is a tangent to the auxiliary circle.
- (28) Find the perpendicular distance between the tangents to the ellipse $\frac{x^2}{30} + \frac{y^2}{24} = 1$ which are parallel to the line 4x - 2y + 23 = 0.

[Ans: $24 / \sqrt{5}$]

PROBLEMS

<u>05 - ELLIPSE</u>

(29) Prove that the equation of the chord of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ which has its midpoint at (h, k) is $\frac{hx}{a^2} + \frac{ky}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}$. (30) Prove that the equation of the chord joining the points P($\alpha + \beta$) and Q($\alpha - \beta$) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{x}{a}\cos\alpha + \frac{y}{b}\sin\alpha = \cos\beta$. (31) Prove that the area of the triangle formed by the points P(θ), Q(α) and R(β) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is 2ab $\left| \sin \frac{\alpha - \beta}{2} \sin \frac{\beta - \theta}{2} \sin \frac{\theta - \alpha}{2} \right|$. (32) Prove that the equations of the common tangents to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = r^2$ (b < r > a) are $y\sqrt{a^2 - r^2} = \pm x\sqrt{r^2 - b^2} \pm r\sqrt{a^2 - b^2}$.

(33) Circles of constant radius c are drawn to pass through the ends of a variable diameter of the ellipse. Prove that the locus of their centres is he curve

$$(x^{2} + y^{2})(a^{2}x^{2} + b^{2}y^{2} + a^{2}b^{2}) = c^{2}(a^{2}x^{2} + b^{2}y^{2}).$$

(34) Prove that the measure of the angle between the two tangents drawn to the ellipse

$$-\frac{y^2}{b^2} = 1 \text{ from an external point (h, k) is } \tan^{-1} \left| \frac{2ab \sqrt{\frac{h^2}{a^2} + \frac{k^2}{b^2} - 1}}{h^2 + k^2 - a^2 - b^2} \right|$$