(1) The end-points A and B of $\overline{A B}$ are on the X - and Y-axis respectively. If $A B=a+b$, $\mathrm{a}>0, \mathrm{~b}>0, \mathrm{a} \neq \mathrm{b}$ and P divides $\overline{\mathrm{AB}}$ from A in the ratio $\mathrm{b}: \mathrm{a}$, then show that P lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(2) If the feet of the perpendiculars drawn to the tangent at any point of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from foci S and S^{\prime} are L and L^{\prime} respectively, then show that $S L \cdot S^{\prime} L^{\prime}=b^{2}$.
(3) Prove that the line segment of any tangent, between the tangents at the end-points of the major axis, forms a right angle at either focus of the ellipse.
(4) Show that the equation of the chord joining the points $\mathbf{P}(\alpha)$ and $Q(\beta)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{x}{a} \cos \frac{\alpha+\beta}{2}+\frac{\gamma}{b} \sin \frac{\alpha+\beta}{2}=\cos \frac{\alpha-\beta}{2}$.
(5) If the chord joining the points $P(\alpha)$ and $Q(\beta)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the focus $(a e, 0)$, then prove that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}=\frac{e-1}{e+1}$.
(6) If the chord joining the points $P(\alpha)$ and $Q(\beta)$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ subtends a right angle at the centre, then show that $\tan \alpha \cdot \tan \beta+\frac{a^{2}}{b^{2}}=0$ and if it forms a right angle at the vertex $(a, 0)$, then show that $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}+\frac{b^{2}}{a^{2}}=0$.
(7) If the difference of eccentric angles of the points P and Q on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{\pi}{2}$ and $\overleftrightarrow{P Q}$ cuts intercepts of length c and d on the axes, then prove that $\frac{a^{2}}{c^{2}}+\frac{b^{2}}{d^{2}}=2$.
(8) If two radii $\overline{\mathrm{CP}}$ and $\overline{\mathrm{CQ}}$ of the ellipse $\frac{x^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$ are perpendicular, then prove that $\frac{1}{C P^{2}}+\frac{1}{C Q^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$, where C is the centre of the ellipse.
(9) Find the equations of the tangents drawn to the ellipse, $9 x^{2}+16 y^{2}=144$ from the point (2, 3).
[Ans: $x+y-5=0, y-3=0]$
(10) Find the equations of the tangents of the ellipse $9 x^{2}+4 y^{2}=36$ parallel to the line $y=2 x$. Also obtain the co-ordinates of the contact points.
$\left[\right.$ Ans : $2 x-y+5=0$ at $\left(-\frac{8}{5}, \frac{9}{5}\right)$ and $2 x-y-5=0$ at $\left.\left(\frac{8}{5},-\frac{9}{5}\right)\right]$
(11) Show that the tangents at the end-points of a focal chord of the ellipse intersect on the directrix.
(12) Show that the point of intersection of the tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the points whose eccentric angles differ by $\frac{\pi}{2}$ lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
(13) The difference of the eccentric angles of the points P and Q on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{\pi}{2}$. If the tangents at P and Q intersect in R, then prove that $\overline{C R}$ and $\overline{P Q}$ bisect each other.
(14) P and Q are coherent points on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and its auxiliary circle. Show that the tangents to the ellipse at P and the circle at Q intersect on the X-axis. ($\mathrm{a}>\mathrm{b}$)
(15) If the lengths of the perpendicular line-segments from the centre to two mutually orthogonal tangents of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ are p_{1} and p_{2}, then prove that $\mathrm{p}_{1}{ }^{2}+\mathrm{p}_{2}{ }^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$.
(16) A tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersects the axes in C and D respectively and touches the ellipse at mid-point of $\overline{C D}$ in the first quadrant. Find its equation.
$\left[\right.$ Ans: $\left.\frac{x}{a}+\frac{y}{b}=\sqrt{2}\right]$
(17) If the perpendicular distance of the focus from the tangent at a point P on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is p, then prove that $S P=\frac{2 a p^{2}}{b^{2}+p^{2}}$.
(18) $B(0, b)$ is one end-point of the chord of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ passing through the focus S^{\prime}. If P is another end-point, then show that the slope of $\overline{\mathbf{C P}}$ is $\frac{\left(1-e^{2}\right)^{\frac{3}{2}}}{2 e}$, where C is the centre of the ellipse.
(19) The foot of the perpendicular from a point P on ellipse to the major axis is M. If PM intersects the tangent at the end-point of a latus rectum in R, then prove that $M R=S P$.
(20) If the line containing a focal-chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersects the auxiliary circle in Q and Q^{\prime}, then prove that $S Q \times S Q^{\prime}=b^{2}$.
(21) Prove that if the tangent at a point P to the ellipse intersects a directrix at F, then $\overline{\text { PF }}$ forms a right angle at the corresponding focus.
(22) The tangent at point P of an ellipse intersects the major axis in T. The line passing through T and perpendicular to major axis $\overline{{A A^{\prime}}^{\prime}}$, intersects $\overleftrightarrow{A P}$ and $\overleftrightarrow{A^{\prime} P}$ in Q and Q^{\prime} respectively. Show that T is the mid-point of $\overline{Q^{\prime}}$.
(23) The tangent at point P of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ intersects the axes in T and T, respectively. If R is the foot of perpendicular from the centre C to the tangent, then prove that $\mathrm{TT} \cdot \mathrm{PR}=\mathrm{a}^{2}-\mathrm{b}^{2}$.
(24) Find the condition that the line $l x+m y+n=0$ may be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and find the co-ordinates of its point of contact.
$\left[\right.$ Ans: $\left.a^{2} l^{2}+b^{2} m^{2}=n^{2}, \quad\left(-\frac{a^{2} l}{n},-\frac{b^{2} m}{n}\right)\right]$
(25) If the tangent at any point of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with centre C meets the major axis in T and minor axis in T, then prove that $\frac{a^{2}}{{C T^{2}}^{2}}+\frac{b^{2}}{C T^{\prime 2}}=1(a>b)$.
(26) Find the condition for the line $x \cos \alpha+y \sin \alpha=p$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
[Ans: $\mathrm{p}^{2} \operatorname{cosec}^{2} \alpha=\mathrm{a}^{2} \cot ^{2} \alpha+\mathrm{b}^{2}$]
(27) P and Q are corresponding points on an ellipse and its auxiliary circle respectively. If the tangent at P to the ellipse meets the major axis in T, then show that $\overleftrightarrow{Q T}$ is a tangent to the auxiliary circle.
(28) Find the perpendicular distance between the tangents to the ellipse $\frac{x^{2}}{30}+\frac{y^{2}}{24}=1$ which are parallel to the line $4 x-2 y+23=0$.
[Ans: $24 / \sqrt{5}$]
(29) Prove that the equation of the chord of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which has its midpoint at (h, k) is $\frac{h x}{a^{2}}+\frac{k y}{b^{2}}=\frac{h^{2}}{a^{2}}+\frac{k^{2}}{b^{2}}$.
(30) Prove that the equation of the chord joining the points $P(\alpha+\beta)$ and $Q(\alpha-\beta)$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\frac{x}{a} \cos \alpha+\frac{y}{b} \sin \alpha=\cos \beta$.
(31) Prove that the area of the triangle formed by the points $\mathbf{P}(\theta), \mathbf{Q}(\alpha)$ and $\mathbf{R}(\beta)$ on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $2 a b\left|\sin \frac{\alpha-\beta}{2} \sin \frac{\beta-\theta}{2} \sin \frac{\theta-\alpha}{2}\right|$.
(32) Prove that the equations of the common tangents to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=r^{2}(b \lll a)$ are $y \sqrt{a^{2}-r^{2}}= \pm x \sqrt{r^{2}-b^{2}} \pm r \sqrt{a^{2}-b^{2}}$.
(33) Circles of constant radius c are drawn to pass through the ends of a variable diameter of the ellipse. Prove that the locus of their centres is he curve
$\left(x^{2}+y^{2}\right)\left(a^{2} x^{2}+b^{2} y^{2}+a^{2} b^{2}\right)=c^{2}\left(a^{2} x^{2}+b^{2} y^{2}\right)$.
(34) Prove that the measure of the angle between the two tangents drawn to the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from an external point (h, k) is $\tan ^{-1}\left|\frac{2 a b \sqrt{\frac{h^{2}}{a^{2}+\frac{k^{2}}{b^{2}}-1}}}{h^{2}+k^{2}-a^{2}-b^{2}}\right|$

