(1) If the angle $\theta$ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} x+4=0$ is such that $\sin \theta=\frac{1}{3}$, then the value of $\lambda$ is
(a) $\frac{5}{3}$
(b) $-\frac{3}{5}$
(c) $\frac{3}{4}$
(d) $-\frac{4}{3}$
[AIEEE 2005]
(2) If the plane $2 a x-3 a y+4 a z+6=0$ passes through the midpoint of the line joining the centres of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=8$, then a equals
(a) - 1
(b) 1
(c) - 2
(d) 2
[AIEEE 2005]
(3) The distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is
(a) $\frac{10}{9}$
(b) $\frac{10}{3 \sqrt{3}}$
(c) $\frac{3}{10}$
(d) $\frac{10}{3}$
[AIEEE 2005]
(4) The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is
(a) $0^{\circ}$
(b) $90^{\circ}$
(c) $45^{\circ}$
(d) $30^{\circ}$
[AIEEE 2005]
(5) The plane $x+2 y-z=4$ cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius
(a) 3
(b) 1
(c) 2
(d) $\sqrt{2}$
[AIEEE 2005]
(6) A line makes the same angle $\theta$ with each of the $X$ - and $Z$ - axis. If the angle $\beta$, which it makes with the $y$-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals
(a) $\frac{2}{3}$
(b) $\frac{1}{5}$
(c) $\frac{3}{5}$
(d) $\frac{2}{5}$
[ AIEEE 2004]
(7) Distance between two parallel planes $2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is
(a) $\frac{3}{2}$
(b) $\frac{5}{2}$
(c) $\frac{7}{2}$
(d) $\frac{9}{2}$
[ AIEEE 2004 ]
(8) A line with direction cosines proportional to 2, 1, 2 meets each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. The coordinates of each of the points of intersection are given by
(a) (3a, 3a, 3a), (a, a, a)
(b) (3a, 2a, 3a), ( $\mathrm{a}, \mathrm{a}, \mathrm{a}$ )
(c) (3a, 2a, 3a), (a, a, 2a)
(d) (2a, 3a, 3a), (2a, a, a)
[ AIEEE 2004]
(9) If the straight lines $x=1+s, y=-3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t$, $z=2-t$, with parameters $s$ and $t$ respectively, are co-planar, then $\lambda$ equals
(a) - 2
(b) - 1
(c) $-\frac{1}{2}$
(d) 0
[AIEEE 2004]
(10) The intersection of the spheres $x^{2}+y^{2}+z^{2}+7 x-2 y-z=13$ and $x^{2}+y^{2}+z^{2}-3 x+3 y+4 z=8$ is the same as the intersection of one of the spheres and the plane
(a) $x-y-z=1$
(b) $x-2 y-z=1$
(c) $x-y$
$2 z=1$
(d) $2 x-y-z=1$
[ AIEEE 2004]
(11) The lines $x=a y+b, z=c y+d$ and $x=a \prime y+b \prime, z=c \prime y+d \prime$ will be perpendicular if and only if
(a) $a a^{\prime}+c c^{\prime}+1=0$
(b) $a a^{\prime}+c c^{\prime}=0$
(c) $a a^{\prime}+b b^{\prime}=0$ and
(d) $a a^{\prime}+b b^{\prime}+c c^{\prime}=0$
[AIEEE 2003]
(12) The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, if
(a) $k=0$ or -1
(b) $k=1$ or -1
(c) $k=0$ or -3
(d) $k=3$ or -3
[AIEEE 2003]
(13) Two systems of rectangular axes have the same origin. If a plane cuts them at distances $a, b, c$ and $a^{\prime}, b^{\prime} c^{\prime}$ from the origin, then
(a) $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
(b) $\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
(c) $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
(d) $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}$
$\frac{1}{c^{\prime 2}}=0$
[AIEEE 2003]
(14) The direction cosines of the normal to the plane $x+2 y-3 z+4=0$ are
( a ) $-\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
(b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
( c ) $-\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
( d ) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
[AIEEE 2003]
(15) The radius of a circle in which the sphere $x^{2}+y^{2}+z^{2}+2 x-2 y-4 z=19$ is cut by the plane $x+2 y+2 z+7=0$ is
(a) 1
(b) 2
(c) 3
(d) 4
[AIEEE 2003]
(16) The shortest distance from the plane $12 x+4 y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is
(a) 13
(b) 26
(c) 39
(d) 11
[AIEEE 2003]
(17) The distance of a point (1,-2,3) from the plane $x-y+z=5$ and parallel to the line $\frac{x}{2}=\frac{y}{3}=\frac{z}{-6}$ is
(a) 1
(b) 7
(c) 3
(d) 13
[ AIEEE 2002]
(18) The co-ordinates of the point in which the line joining the points (3, 5, -7) and (-2, 1, 8) and intersected by the YZ-plane are
( a ) $\left(0, \frac{13}{5}, 2\right)$
(b) $\left(0,-\frac{13}{5},-2\right)$
(c ) $\left(0,-\frac{13}{5}, \frac{2}{5}\right)$
(d) $\left(0, \frac{13}{5}, \frac{2}{5}\right)$
[AIEEE 2002]
(19) The angle between the planes $2 x-y+3 z=6$ and $x+y+2 z=7$ is
(a) $0^{\circ}$
(b) $30^{\circ}$
(c) $45^{\circ}$
(d) $60^{\circ}$
[ AIEEE 2002]
(20) If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-5}{1}=\frac{z-6}{-5}$ are at right angles, then the value of $k$ is
(a) $-\frac{10}{7}$
(b) $-\frac{7}{10}$
(c) -10
(d) - 7
[AIEEE 2002]
(21) $A$ unit vector perpendicular to the plane of $\vec{a}=2 \vec{i}-6 \vec{j}-3 \vec{k}$ and $\vec{b}=4 \vec{i}+3 \vec{j}-\vec{k}$ is
(a) $\frac{4 \vec{i}+3 \vec{j}-\vec{k}}{\sqrt{26}}$
(b) $\frac{2 \vec{i}-6 \vec{j}-3 \vec{k}}{7}$
(c) $\frac{3 \vec{i}-2 \vec{j}+6 \vec{k}}{7}$
(d)
$\frac{2 \vec{i}-3 \vec{j}-6 \vec{k}}{7}$
[ AIEEE 2002]
(22) A unit vector normal to the plane through the points $\vec{i}, 2 \vec{j}$ and $3 \vec{k}$ is
(a) $6 \vec{i}+3 \vec{j}+2 \vec{k}$
(b) $\vec{i}+2 \vec{j}+3 \vec{k}$
(c) $\frac{6 \vec{i}+3 \vec{j}+2 \vec{k}}{7}$
(d) $\left|\frac{6 \vec{i}+3 \vec{j}+2 \vec{k}}{7}\right|$
[ AIEEE 2002]
(23) A plane at a unit distance from the origin intersects the coordinate axes at $P, Q$ and R. If the locus of the centroid of $\triangle P Q R$ satisfies the equation $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=k$, then the value of $k$ is
(a) 1
(b) 3
(c) 6
(d) 9
[ IIT 2005]
(24) Two lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect at a point, then $k$ is
(a) $\frac{3}{2}$
(b) $\frac{9}{2}$
(c) $\frac{2}{9}$
(d) 2
[ IIT 2004 ]
(25) If the line $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies exactly on the plane $2 x-4 y+z=7$, then the value of $k$ is
(a) 7
(b) - 7
(c) 1
(d) no real value
[ IIT 2003]
(26) There are infinite planes passing through the points (3, 6, 7) touching the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y-6 z=11$. If the plane passing through the circle of contact cuts intercepts $\mathbf{a}, \mathrm{b}, \mathbf{c}$ on the co-ordinate axes, then $\mathbf{a}+\mathbf{b}+\mathbf{c}=$
(a) 12
(b) 23
(c) 67
(d) 47
(27) The mid-points of the chords cut off by the lines through the point (3, 6, 7) intersecting the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y-6 z=11$ lie on a sphere whose radius =
(a) 3
(b) 4
(c) 5
(d) 6
(28) The ratio of magnitudes of total surface area to volume of a right circular cone with vertex at origin, having semi-vertical angle equal to $30^{\circ}$ and the circular base on the plane $x+y+z=6$ is
(a) 1
(b) 2
(c) 3
(d) 4
(29) The direction of normal to the plane passing through origin and the line of intersection of the planes $x+2 y+3 z=4$ and $4 x+3 y+2 z=1$ is
(a) $(1,2,3$ )
(b) $(3,2,1)$
(c) $(2,3,1)$
(d) $(3,1,2)$
(30) The volume of the double cone having vertices at the centres of the spheres $x^{2}+y^{2}+z^{2}=25$ and $x^{2}+y^{2}+z^{2}-4 x-8 y-8 z+11=0$ and the common circle of the spheres as the circular base of the double cone is
(a) $24 \pi$
(b) $32 \pi$
(c) $28 \pi$
(d) $36 \pi$
(31) A line through the point $P(0,6,8)$ intersects the sphere $x^{2}+y^{2}+z^{2}=36$ in points $A$ and $B$. $P A \times P B=$
(a) 36
(b) 24
(c) 100
(d) 64
(32) A sphere $x^{2}+y^{2}+z^{2}-2 x-4 y-6 z-11=0$ is inscribed in a cone with vertex at ( $6,6,6$ ). The semi-vertical angle of the cone is
(a) $15^{\circ}$
(b) $30^{\circ}$
(c) $45^{\circ}$
(d) $60^{\circ}$
(33) The point which is farthest on the sphere $x^{2}+y^{2}+z^{2}=144$ from the point (2, 4, 4) is
(a) $(3,6,6)$
(b) $(-3,-6,-6)$
(c) $(4,8,8)$
(d) $(-4,-8,-8)$
(34) The equation of the plane containing the line $x+y-z=0=2 x-y+4$ and passing through the point ( $1,1,1$ ) is
(a) $3 x+4 y-5 z=2$
(b) $4 x+5 y-6 z=3$
(c) $x+y+z=3$
(d) $3 x+6 y-5 z=4$
(35) A plane passes through the points of intersection of the spheres $x^{2}+y^{2}+z^{2}=36$ and $x^{2}+y^{2}+z^{2}-4 x-4 y-8 z-12=0$. A line joining the centres of the spheres intersects this plane at
(a) $(1,1,1)$
(b) $(1,1,2)$
(c) $(1,2,1)$
(d) $(2,1,1)$
(36) The area of the circle formed by the intersection of the spheres $x^{2}+y^{2}+z^{2}=36$ and $x^{2}+y^{2}+z^{2}-4 x-4 y-8 z-12=0$ is
(a) $9 \pi$
(b) $18 \pi$
(c) $27 \pi$
(d) $36 \pi$
(37) A line joining the points $(1,1,1)$ and (2,2,2) intersects the plane $x+y+z=9$ at the point
(a) $(3,4,2)$
(b) $(2,3,4)$
(c) $(3,2,4)$
(d) $(3,3,3)$

## Answers

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | c | b | b | b | c | c | b | a | d | a | c | d | d | c | a | a | a | d | a |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| c | c | d | b | a | d | a | c | b | b | d | c | d | d | b | c | d |  |  |  |

