( Answers at the end of all questions)
(1) Area of the greatest rectangle that can be inscribed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(a) 2ba
(b) ab
(c) $\sqrt{a b}$
(d) $\frac{a}{b}$
[ AIEEE 2005]
(2) Let $P$ be the point $(1,0)$ and $Q$ the point on the locus $y^{2}=8 x$. The locus of midpoint of $P Q$ is
(a) $y^{2}-4 x+2=0$
(b) $y^{2}+4 x+2=0$
(c) $x^{2}+4 y+2=0$
(d) $x^{2}-4 y+2=0$
[ AIEEE 2005]
(3) The line parallel to the X -axis and passing through the intersection of the lines $a x+2 b y+3 b=0$ and $b x-2 a y-3 a=0$, where $(a, b) \neq(0,0)$ is
(a) below the $X$-axis at a distance $\frac{3}{2}$ from it
(b) below the $X$-axis at a distance $\frac{2}{3}$ from it
(c) above the $X$-axis at a distance $\frac{3}{2}$ from it
(d) above the $X$-axis at a distance $\frac{2}{3}$ from it
[ AIEEE 2005]
(4) The locus of a point $p(\alpha, \beta)$ moving under the condition that the line $y=\alpha x+\beta$ is a tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is
(a) an ellipse
(b) a circle
(c) a parabola
(d) a hyperbola
[ AIEEE 2005]
(5) If non-zero numbers $a, b, c$ are in H.P., then the straight line $\frac{x}{a}+\frac{y}{b}+\frac{1}{c}=0$ always passes through a fixed point. That point is
(a) (-1,2)
(b) (-1,-2)
(c) (1,-2)
(d) $\left(1,-\frac{1}{2}\right)$
[AIEEE 2005]
(6) If a vertex of a triangle is $(1,1)$ and the midpoint of two sides through this vertex are $(-1,2)$ and $(3,-2)$, then the centroid of the triangle is
(a) $\left(-1, \frac{7}{3}\right)$
(b) $\left(-\frac{1}{3}, \frac{7}{3}\right)$
(c) $\left(1, \frac{7}{3}\right)$
(d) $\left(\frac{1}{3}, \frac{7}{3}\right)$
[ AIEEE 2005]
( Answers at the end of all questions)
(7) If the circles $x^{2}+y^{2}+2 a x+c y+a=0$ and $x^{2}+y^{2}-3 a x+d y-1=0$ intersect in two distinct points $P$ and $Q$, then the line $5 x+b y-a=0$ passes through $P$ and Q for
(a) exactly one value of a
(b) no value of a
(c) infinitely many values of a
(d) exactly two values of a
[AIEEE 2005]
(8) A circle touches the X-axis and also touches the circle with centre at (0,3) and radius 2. The locus of the centre of the circle is
( a ) an ellipse
(b) a circle
(c) a hyperbola
(d) a parabola
[AIEEE 2005]
(9) If a circle passes through the point $(a, b)$ and cuts the circle $x^{2}+y^{2}=p^{2}$ orthogonally, then the equation of the locus of its centre is
(a) $\mathrm{x}^{2}+\mathrm{y}^{2}-3 a x-4 b y+\left(\mathrm{a}^{2}+\mathrm{b}^{2}-\left(\mathrm{p}^{2}\right)=0\right.$
(b) $2 a x+2 b y-\left(a^{2}-b^{2}+p^{2}\right)=0$
(c) $x^{2}+y^{2}-2 a x-3 b y\left(a^{2}-b^{2}-p^{2}\right)=0$
(d) $2 a x+2 b y-\left(a^{2}+b^{2}+p^{2}\right)=0$
[ AIEEE 2005]
(10) An ellipse has $O B$ as semi minor axis, $F$ and $F^{\prime}$ its foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is
(a) $\frac{1}{\sqrt{2}}$
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) $\frac{1}{\sqrt{3}}$
[ AIEEE 2005]
(11) If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sector, then
(a) $3 a^{2}-10 a b+3 b^{2}=0$
(b) $3 a^{2}-2 a b+3 b^{2}=0$
(c) $3 a^{2}+10 a b+3 b^{2}=0$
(d) $3 a^{2}+2 a b+3 b^{2}=0$
[ AIEEE 2005]
(12) Let $A(2,-3)$ and $B(-2,1)$ be the vertices of a triangle $A B C$. If the centroid of this triangle moves on the line $2 x+3 y=1$, then the locus of the vertex $C$ is the line.
(a) $2 x+3 y=9$
(b) $2 x-3 y=7$
(c) $3 x+2 y=5$
(d) $3 x-2 y=3$
[ AIEEE 2004]
( Answers at the end of all questions)
(13) The equation of the straight line passing through the point (4, 3) and making intercepts on the coordinate axes whose sum is $\mathbf{- 1}$ is
(a) $\frac{x}{2}+\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
(b) $\frac{x}{2}-\frac{y}{3}=-1$ and $\frac{x}{-2}+\frac{y}{1}=-1$
(c) $\frac{x}{2}+\frac{y}{3}=1$ and $\frac{x}{-2}+\frac{y}{1}=1$
(d) $\frac{x}{2}-\frac{y}{3}=1 \quad$ and $\quad \frac{x}{-2}+\frac{y}{1}=1$
[ AIEEE 2004]
(14) If the sum of the slopes of the lines given by $x^{2}-2 c x y-7 y^{2}=0$ is four times their product, the c has the value
(a) 1
(b) - 1
(c) 2
(d)
[ AIEEE 2004]
(15) If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then $c$ equals
(a) 1
(b) - 1
(c)
(d) -3
[ AIEEE 2004]
(16) If a circle passes through the point ( $a, b$ ) and cuts the circle $x^{2}+y^{2}=4$ orthogonally, then the locus of its centre is
(a) $2 a x+2 b y+\left(a^{2}+b^{2}+4\right)=0$
(b) $2 a x+2 b y-\left(a^{2}+b^{2}+4\right)=0$
(c) $2 a x-2 b y+\left(a^{2}+b^{2}+4\right)=0$
(d) $2 a x-2 b y-\left(a^{2}+b^{2}+4\right)=0$
[ AIEEE 2004]
(17) $A$ variable circle passes through the fixed point $A(p, q)$ and touches the $X$-axis. The locus of the other end of the diameter through $A$ is
(a) $(x-p)^{2}=4 q y$
(b) $(x-q)^{2}=4 p y$
(c) $(y-p)^{2}=4 q x$
(d) $(y-q)^{2}=4 p x$
[ AIEEE 2004]
(18) If the lines $2 x+3 y+1=0$ and $3 x-y-4=0$ lie along diameters of a circle of circumference $10 \pi$, then the equation of the circle is
(a) $x^{2}+y^{2}-2 x+2 y-23=0$
(b) $x^{2}+y^{2}-2 x-2 y-23=0$
(c) $x^{2}+y^{2}+2 x+2 y-23=0$
(d) $x^{2}+y^{2}+2 x-2 y-23=0$
[ AIEEE 2004]
( Answers at the end of all questions)
(19) The intercept on the line $y=x$ by the circle $x^{2}+y^{2}-2 x=0$ is AB. Equation of the circle on AB as a diameter is
(a) $x^{2}+y^{2}-x-y=0$
(b) $x^{2}+y^{2}-x+y=0$
(c) $x^{2}+y^{2}+x+y=0$
(d) $x^{2}+y^{2}+x-y=0$
[AIEEE 2004]
(20) If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$, then
(a) $d^{2}+(2 b+3 c)^{2}=0$
(b) $d^{2}+(3 b+2 c)^{2}=0$
(c) $d^{2}+(2 b-3 c)^{2}=0$
(d) $d^{2}+(3 b-2 c)^{2}=0$
[ AIEEE 2004]
(21) The eccentricity of an ellipse, with its centre at the origin, is $\frac{1}{2}$. If one of the directices is $x=4$, then the equation of the ellipse is
(a) $3 x^{2}+4 y^{2}=1$
(b) $3 x^{2}+4 y^{2}$
12
(c) $4 x^{2}+3 y^{2}=12$
(d) $4 x^{2}+3 y$
[ AIEEE 2004]
(22) Locus of centroid of the friangle whose vertices are $(a \cos t, a \sin t),(b \sin t,-b \cos t$ and ( 1,0 ) where $t$ is a parameter is
(a) $(3 x-1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
(c ) $(3 x+1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
(b) $(3 x+1)^{2}+(3 y)^{2}=a^{2}-b^{2}$
(d) $(3 x-1)^{2}+(3 y)^{2}=a^{2}+b^{2}$
[AIEEE 2003]
(23) If the equation of the locus of a point equidistant from the points $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is
(a) $\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}-a_{2}{ }^{2}-b_{2}{ }^{2}}$
(b) $a_{1}{ }^{2}-a_{2}{ }^{2}+b_{1}{ }^{2}-b_{2}{ }^{2}$
(c) $\frac{1}{2}\left(a_{1}{ }^{2}+a_{2}{ }^{2}+b_{1}{ }^{2}+b_{2}{ }^{2}\right)$
(d) $\frac{1}{2}\left(a_{1}{ }^{2}+b_{2}{ }^{2}-a_{1}{ }^{2}-b_{1}{ }^{2}\right)$
[ AIEEE 2003]
(24) If the pair of straight lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair, then
(a) $p=q$
(b) $p=-q$
(c) $p q=1$
(d) $p q=-1$
[ AIEEE 2003]
( Answers at the end of all questions)
(25) If the system of linear equations $x+2 a y+a z=0, x+3 b y+b z=0$ and $x+4 c y+c z=0$ has a non-zero solution, then $a, b, c$
(a) are in A. P.
(b) are in G. P.
(c) are in H.P.
(d) satisfy $a+2 b+3 c=0$
[AIEEE 2003]
(26) The area of the region bounded by the curves $y=|x-1|$ and $y=3-|x|$ is
(a) 2 sq. units
(b) 3 sq. units
(c) 4 sq. units
(d) 6 sq. units
[ AIEEE 2003]
(27) The equation of the straight line joining the origin to the point of intersection of $y-x+7=0$ and $y+2 x-2=0$ is
(a) $3 x+4 y=0$
(b) $3 x-4 y=0$
(c) $4 x-3 y=0$
(d) $4 x+3 y=0$
[ AIEEE 2003]
(28) If the two circles $(x-1)^{2}+(y-3)^{2}=r^{2}$ and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct points, then
(a) $r<2$
(b) $r=2$
(c.) $r>2$
(d) $2<r<8$
[ AIEEE 2003]
(29) The lines $2 x-3 y=5$ and $3 x-4 y=7$ are diameters of a circle having radius 7 units. The equation of the circle is
(a) $x^{2}+y^{2}-2 x+2 y=62$
(b) $x^{2}+y^{2}+2 x-2 y=62$
(c) $x^{2}+y^{2}-2 x+2 y=47$
(d) $x^{2}+y^{2}+2 x-2 y=47$
[ AIEEE 2003]
(30) if normal at the point $\left(\mathrm{bt}_{1}{ }^{2}, 2 \mathrm{bt}_{1}\right)$ on a parabola meets the parabola again at the point ( $\mathrm{bt}_{2}{ }^{2}, 2 \mathrm{bt} \mathbf{t}_{2}$ ), then
(a) $t_{2}=-t_{1}-\frac{2}{t_{1}}$
(b) $t_{2}=-t_{1}+\frac{2}{t_{1}}$
(c) $t_{2}=t_{1}-\frac{2}{t_{1}}$
(d) $t_{2}=t_{1}+\frac{2}{t_{1}}$
[AIEEE 2003]
(31) If $x_{1}, x_{2}, x_{3}$ and $y_{1}, y_{2}, y_{3}$ are both in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ lie on
(a) a circle
(b) an ellipse
(c) a straight line
(d) a hyperbola
[ AIEEE 2003]
(Answers at the end of all questions)
(32) If the tangent on he point $(2 \sec \phi, 3 \tan \phi)$ of the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$ is parallel to $3 x-y+6=0$, then the value of $\phi$ is
(a) $30^{\circ}$
(b) $45^{\circ}$
(c) $60^{\circ}$
(d) $75^{\circ}$
[AIEEE 2003]
(33) The equation of the normal to the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ at $(-4,0)$ is
(a) $x=0$
(b) $x=1$
(c) $y=0$
(d) $2 x-3 y=1$
[ AIEEE 2003]
(34) The square of length of tangent from (3,-4) on the circle $x^{2}+y^{2}-4 x-6 y+3=0$ is
(a) 20
(b) 30
(c) 40
(d) 50
[AIEEE 2002]
(35) The equation of straight line passing through the intersection of the lines $x-2 y=1$ and $x+3 y=2$ and parallel to $3 x+4 y=0$ is
(a) $3 x+4 y+5=0$
(b) $3 x+4 y-10=0$
(c) $3 x+4 y-5=0$
$3 x+4 y+6=0$
[AIEEE 2002]
(36) The medians BE and AD of a triangle with vertices $A(0, b), B(0,0)$ and $C(a, 0)$ are perpendicular to each other if
(a) $a=\frac{b}{2}$
(b) $b=\frac{a}{2}$
(c) $a b=1$
(d) $a= \pm \sqrt{2 b}$
[ AIEEE 2002]
(37) The equation of the curve through the point $(1,0)$, whose slope is $\frac{y-1}{x^{2}+x}$, is
(a) $(y-1)(x+1)+2 x=0$
(b) $2 x(y-1)+x+1=0$
(c) $x(y-1)(x+1)+2=0$
(d) $x(y+1)+y(x+1)=0$
[ AIEEE 2002]
(38) The angle between the lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ is
(a) $\tan ^{-1}\left[\frac{a_{1} b_{1}-a_{2} b_{2}}{a_{1} a_{2}+b_{1} b_{2}}\right]$
(b) $\tan ^{-1}\left[\frac{a_{1} b_{2}+a_{2} b_{1}}{a_{1} a_{2}-b_{1} b_{2}}\right]$
(c) $\cot ^{-1}\left[\frac{a_{1} b_{1}-a_{2} b_{2}}{a_{1} a_{2}+b_{1} b_{2}}\right]$
(d) $\cot ^{-1}\left[\frac{a_{1} a_{2}+b_{1} b_{2}}{a_{1} b_{2}-a_{2} b_{1}}\right]$
[ AIEEE 2002 ]
( Answers at the end of all questions)
(39) The equation of the tangent to the parabola $y^{2}=9 x$, which passes through the point $(4,10)$, is
(a) $x+4 y+1=0$
(b) $9 x+4 y+4=0$
(c) $x-4 y+36=0$
(d) $9 x-4 y+4=0$

AIEEE 2002 ]
(40) A square of side a lies above the X -axis and has one vertex at the origin. The side passing through the origin makes an angle $\alpha(0<\alpha<\pi / 4)$ with the positive direction of X -axis. The equation of its diagonal not passing through the origin is
(a) $y(\cos \alpha-\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$
(b) $y(\cos \alpha+\sin \alpha)+x(\sin \alpha-\cos \alpha)=a$
(c) $y(\cos \alpha+\sin \alpha)+x(\sin \alpha+\cos \alpha)=$
(d) $y(\cos \alpha+\sin \alpha)-x(\sin \alpha-\cos \alpha)=a$
[ AIEEE 2002]
(41) The distance between the pair of parallei lines $9 x^{2}-24 x y+16 y^{2}-12 x+16 y-12=0$ is
(a) 5
(b) 8
(c) $\frac{8}{5}$
(d)
[ AIEEE 2002]
(42) The equation of a circle, passing through (1, 0) and ( 0,1 ) and having the smallest possible radius, is
(a) $x^{2}+y^{2}-x-y=0$
(b) $x^{2}+y^{2}+x+y=0$
(c) $2 x^{2}+y^{2}-2 x-y=0$
(d) $x^{2}+2 y^{2}-x-2 y=0$
[ AIEEE 2002]
(43) If distance between the foci of an ellipse is equal to its minor axis, then eccentricity of the ellipse is
(a) $\frac{1}{\sqrt{2}}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{1}{\sqrt{4}}$
(d) $\frac{1}{\sqrt{6}}$
[ AIEEE 2002]
(44) The equation of an ellipse, whose major axis $=8$ and eccentricity $=\frac{1}{2}$, is
(a) $3 x^{2}+4 y^{2}=12$
(b) $3 x^{2}+4 y^{2}=48$
(c) $4 x^{2}+3 y^{2}=48$
(d) $3 x^{2}+9 y^{2}=12$
[ AIEEE 2002]
(45) For the hyperbola $3 x^{2}-y^{2}=4$, the eccentricity is
(a) 1
(b) 2
(c) - 2
(d) 5
[ AIEEE 2002]
( Answers at the end of all questions )
(46) The eccentricity of the hyperbola $\frac{\sqrt{1999}}{3}\left(x^{2}-y^{2}\right)=1$ is
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) 2
(d) $2 \sqrt{2}$
[AIEEE 2002]
(47) The minimum area of the triangle formed by any tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with the co-ordinate axes is
(a) ab
(b) $\frac{a^{2}+b^{2}}{2}$
(c) $\frac{a^{2}+b^{2}}{4}$
(d) $\frac{a^{2}+b^{2}-a b}{3}$
[ IIT 2005]
(48) The tangent drawn to the parabola $y=x^{2}+6$ at the point (1,7) touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$ at the point whose coordinates are
(a) (-6,-7)
(b) (-10, - 15 )
(c) $(-9,-7)$
(d) (13, 7 )
[ IIT 2005]
(49) If $x=\left|a+b \omega+c \omega^{2}\right|$, where $a, b$, $c$ are variable integers and $\omega$ is the cube root of unity other than 1 , then the minimum value of $x=$
(a) 0
(b) 1
(c)
(d) 3
[ IIT 2005]
(50) Locus of the circle touching $X$-axis and the circle $x^{2}+(y-1)^{2}=1$ externally is
(a) $\left\{(x, y) ; x^{2}=4 y\right\} \cup\{(0, y) ; y \leq 0\}$
(b) $\left\{(x, y) ; x^{2}=y\right\} \cup\{(0, y) ; y \leq 0\}$
(c ) $\left\{(x, y) ; x^{2}=4 y\right\} \cup\{(x, y) ; y \leq 0\}$
(d) $\left\{(x, y) ; x^{2}+(y-1)^{2}=4\right\} \cup\{(0, y) ; y \geq 0\}$
[ IIT 2005]
(51) Angle between the tangents drawn from (1,4) to the parabola $y^{2}=4 x$ is
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{4}$
[ IIT 2004]
(52) Area of the triangle formed by the line $x+y=3$ and the angle bisector of the pair of lines $x^{2}-y^{2}+2 y=1$ is
(a) 1
(b) 3
(c) 2
(d) 4
[ IIT 2004 ]
(Answers at the end of all questions)
(53) Diameter of the given circle $x^{2}+y^{2}-2 x-6 y+6=0$ is the chord of another circle C having centre ( 2,1 ). The radius of the circle $C$ is
(a) $\sqrt{3}$
(b) 2
(c) 3
(d) 1
[IIT 2004]
(54) If the system of equations $2 x-y-z=2, x-2 y+z=4$ and $x+y+\lambda z=4$ has no solution, then $\lambda$ is equal to
(a) - 2
(b) 3
(c) 0
(d) - 3
[ IIT 2004 ]
(55) The point at which the line $2 x+\sqrt{6} y=2$ touches the curve $x^{2}-2 y^{2}=4$ is
(a) $(4,-\sqrt{6})$
(b) $(\sqrt{6}, 1)$
( c ) $\left(\frac{1}{2}, \frac{1}{\sqrt{6}}\right)$
(d) $\left(\frac{\pi}{6}, \pi\right)$
[ IIT 2004]
(56) Locus of mid-points of segments of tangents to ellipse $x^{2}+2 y^{2}=2$ intercepted between the axes is
(a) $\frac{1}{2 x^{2}}+\frac{1}{4 y^{2}}=1$ (b) $\frac{1}{4 x^{2}}+\frac{1}{2 y^{2}}=1$
(c ) $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1 \quad$ (d) $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$
[ IIT 2004]
(57) Orthocentre of triangle whose vertices are $(0,0),(3,4)$ and $(4,0)$ is
( a ) $\left(3, \frac{7}{3}\right)$
(b) $\left(3, \frac{5}{4}\right)$
(c) $(5,-2)$
(d) $\left(3,\left(3, \frac{3}{4}\right)\right.$
[ IIT 2003]
(58) Which one of the following is independent of $\alpha$ in the hyperbola ( $0<\alpha<\frac{\pi}{2}$ ) $\frac{x^{2}}{\cos ^{2} \alpha}-\frac{y^{2}}{\sin ^{2} \alpha}=1$
(a) eccentricity
(b) abscissa of foci
(c) directrix
(d) vertex
[ IIT 2003]
(59) The focal chord of $y^{2}=16 x$ is a tangent to the curve $(x-6)^{2}+y^{2}=2$, then the possible values of the slope of this chord are
(a) (1,-1)
(b) (-1/2, 2 )
(c) (-2, 1/2)
(d) (1/2, 2 )
[ IIT 2003]
( Answers at the end of all questions)
(60) A triangle is formed by the co-ordinates, $(0,0),(0,21)$ and (21, 0$)$. Find the numbers of integral co-ordinate strictly inside the triangle (integral co-ordinate has both x and y ).
(a) 190
(b) 105
(c) 231
(d) 205
[HT 2003]
(61) A square is formed by two pairs of straight lines given by $y^{2}-14 y+45=0$ and $x^{2}-8 x+12=0$. The centre of the circle inscribed in it is
(a) (7, 4 )
(b) (4, 7 )
(c) (3, 7 )
(d) (d)
[ IIT 2003]
(62) The tangents are drawn to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$ at the ends of a latus rectum. The area of the quadrilateral so formed is
(a) 27
(b) $\frac{27}{2}$
(c) $\frac{27}{4}$
(d) $\frac{27}{55}$
[ IIT 2003]
(63) A tangent is drawn at the point $(3 \sqrt{3} \cos \theta, \sin \theta) 0<\theta<\frac{\pi}{2}$ to the ellipse $\frac{x^{2}}{27}+\frac{y^{2}}{1}=1$. The least value of the sum of the intercepts made by the tangent on the co-ordinate axes is attained at
(a) $\frac{\pi}{6}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{8}$
(d) $\frac{\pi}{4}$
[ IIT 2003]
(64) If $P=(-1,0), Q=(0,0)$ and $R=(3,3 \sqrt{3})$ are three points, then the equation of the bisector of the angle PQR is
(a) $\frac{\sqrt{3}}{2} x+y=0$
(b) $x+\sqrt{3} y=0$
(c) $\sqrt{3} x+y=0$
(d) $x+\frac{\sqrt{3}}{2} y=0$
[ IIT 2002 ]
(65) If the tangent at the point $P$ on the circle $x^{2}+y^{2}+6 x+6 y=2$ meets the straight line $5 x-2 y+6=0$ at a point $Q$ on the $Y$-axis, then the length of $P Q$ is
(a) 4
(b) $2 \sqrt{5}$
(c) 5
(d) $3 \sqrt{5}$
[ IIT 2002]
( Answers at the end of all questions)
(66) A straight line through the origin $O$ meets the parallel lines $4 x+2 y=9$ and $2 x+y+6=0$ at points $P$ and $Q$ respectively. Then the point $O$ divides the segment $P Q$ in the ratio
(a) $1: 2$
(b) $3: 4$
(c) $2: 1$
(d) $4: 3$
[ HT 2002 ]
(67) If $a>2 b>0$, then the positive value of $m$ for which $y=m x-b \sqrt{1+m^{2}}$ is $a$ common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$ is
(a) $\frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$
(b) $\frac{\sqrt{a^{2}-4 b^{2}}}{2 b}$
(c) $\frac{2 b}{a-2 b}$
[ IIT 2002 ]
(68) The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $y^{2}=4 a x$ is another parabola with directrix
(a) $x=-a$
(b) $x=-\frac{a}{2}$
c) $x=0$
(d) $x=\frac{a}{2}$
[ IIT 2002]
(69) The equation of the common tangent to the curves $y^{2}=8 x$ and $x y=-1$ is
(a) $3 y=9 x+2$
(b) $y=2 x+1$
(c) $2 y=x+8$
(d) $y=x+2$
[ IIT 2002 ]
(70) The number of values of $k$ for which the system of equations $(k+1) x+8 y=4 k$ and $k x+(k+3) y=3 k-1$ has infinitely many solutions is
(a) 0
b ) 1
(c) 2
(d) infinite
[ IIT 2002]
(71) The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point (1, 1) and the co-ordinate axes, lies in the first quadrant. If its area is 2 , then the value of $b$ is
(a) - 1
(b) 3
(c) - 3
(d) 1
[ IIT 2001]
(72) The equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above the $X$-axis is
(a) $\sqrt{3} y=3 x+1$
(b) $\sqrt{3} y=-(x+3)$
(c) $\sqrt{3} y=(x+3)$
(d) $\sqrt{3} y=-(3 x+1)$
[ IIT 2001]
(Answers at the end of all questions)
(73) The number of integer values of $m$, for which the $x$-coordinate of the point of intersection of the lines $3 x+4 y=9$ and $y=m x+1$ is also an integer, is
(a) 2
(b) 0
(c) 4
(d) 1
[IIT 2001]
(74) If $\overline{A B}$ is a chord of the circle $x^{2}+y^{2}=r^{2}$ subtending a right angle at the centre, then the locus of the centroid of the triangle PAB as $P$ moves on the circle is
(a) a parabola
(b) a circle
(c) an ellipse
(d) a pair of straight lines
[ IIT 2001]
(75) The equation of the directrix of the parabola $y^{2}+4 y+4 x+2=0$ is
(a) $x=-1$
(b) $x=1$
(c) $x=\frac{3}{2}$
(d) $x=\frac{3}{2}$
[ IIT 2001]
(76) Area of the parallelogram formed by the lines $y=m x, y=m x+1, y=n x$ and $y=n x+1$ equals
(a) $\frac{|m+n|}{(m-n)^{2}}$
(b)
$\frac{2}{|m+n|}$
(c) $\frac{1}{|m+n|}$
(d) $\frac{1}{|m-n|}$
[ IIT 2001]
(77) If $x+y=k$ is normal to $y^{2}=12 x$, then $k$ is
(a) 3
(b) 9
(c) -9
(d) -3
[ IIT 2000]
(78) The triangle PQR is inscribed in the circle $x^{2}+y^{2}=25$. If $Q$ and $R$ have co-ordinates $(3,4)$ and $(-4,3)$ respectively, then $\angle Q P R$ is equal to
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
[ IIT 2000]
(79) Let PS be the median of the triangle with vertices $\mathbf{P ( 2 , 2 ) , ~} \mathbf{Q}(6,-1)$ and $\mathbf{R ( 7 , 3 )} \mathbf{~ ( 2 )}$ The equation of the line passing through (1,-1) and parallel to PS is
(a) $2 x-9 y=7$
(b) $2 x-9 y=11$
(c) $2 x+9 y=11$
(d) $2 x+9 y=-7$
[ IIT 2000]
(Answers at the end of all questions)
(80) The incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
( a ) $\left(1, \frac{\sqrt{3}}{2}\right)$
(b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
(c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
( d ) $\left(1, \frac{1}{\sqrt{3}}\right)$ [HT 2000]
(81) If the circles $x^{2}+y^{2}+2 x+2 k y+6=0$ and $x^{2}+y^{2}+2 k y+k=0$ intersect orthogonally, then $k$ is
(a) 2 or $-\frac{3}{2}$
(b) - 2 or $-\frac{3}{2}$
(c) 2 or $\frac{3}{2}$
(d) -2 or $\frac{3}{2}$
[ IIT 2000]
(82) If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of $k$ is
(a) $\frac{1}{8}$
(b) 8
(c) 4
(d)
[ IIT 2000]
(83) If $x_{1}, x_{2}, x_{3}$ as well as $y_{1}, y_{2}, y_{3}$ are in G.P. with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$
(a) lie on a straight line
(b) lie on an ellipse
(c) lie on a circle
d) are vertices of a triangle
[ IIT 1999]
(84) The curve described parametrically by $x=t^{2}+t+1, y=t^{2}-t+1$ represents
(a) a pair of straight lines
(b) an ellipse
(c) a parabola
(d) a hyperbola
[ IIT 1999]
(85) Let $P(\mathbf{a} \sec \theta, b \tan \theta)$ and $Q(\mathbf{a} \sec \phi, b \tan \phi)$, where $\theta+\phi=\frac{\pi}{2}$, be two points on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If $(h, k)$ is the point of intersection of the normals at $P$ and $Q$, then $k$ is equal to
(a) $\frac{a^{2}+b^{2}}{a}$
(b) $-\frac{a^{2}+b^{2}}{a}$
(c) $\frac{a^{2}+b^{2}}{b}$
(d) $-\frac{a^{2}+b^{2}}{b}$
[ IIT 1999]
(86) If two distinct chords drawn from the point ( $p, q$ ) on the circle $x^{2}+y^{2}=p x+q y$ (where $\mathrm{pq} \neq 0$ ) are bisected by the X-axis, then
(a) $p^{2}=q^{2}$
(b) $p^{2}=8 q^{2}$
(c) $p^{2}<8 q^{2}$
(d) $p^{2}>8 q^{2}$
[ IIT 1999]
(Answers at the end of all questions)
(87) Let PQR be a right-angled isosceles triangle, right-angled at $\mathbf{P}(2,1)$. If the equation of the line $Q R$ is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and RS is
(a) $3 x^{2}-3 y^{2}+8 x y+20 x+10 y+25=0$
(b) $3 x^{2}-3 y^{2}+8 x y-20 x-10 y+25=0$
(c) $3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0$
(d) $3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0$
[IIT 1999]
(87) If two distinct chords drawn from the point ( $p, q$ ) on the circle $x^{2}+y^{2}=p x+q y$ (where $\mathrm{pq} \neq 0$ ) are bisected by the X -axis, then
(a) $p^{2}=q^{2}$
(b) $p^{2}=8 q^{2}$
(c) $\mathrm{p}^{2}<8 \mathrm{q}^{2}$
(d) $p^{2}>8 q^{2}$
[ IIT 1999]
(88) If $x=9$ is the chord of contact of the hyperbola $\hat{x}^{2}-y^{2}=9$, then the equation of the corresponding pair of tangents is
(a) $9 x^{2}-8 y^{2}+18 x-9=0$
(b) $9 x^{2}-8 y^{2}-18 x+9=0$
(c) $9 x^{2}-8 y^{2}-18 x-9=0$
(d) $9 x^{2}-8 y^{2}+18 x+9=0$
[ IIT 1999]
(89) Let $L_{1}$ be a straight line passing through the origin and $L_{2}$ be the straight line $x+y=1$. If the intercepts made by the circle $x^{2}+y^{2}-x+3 y=0$ on $L_{1}$ and $L_{2}$ are equal, then which of the following equations can represent $L_{1}$ ?
(a) $x+y=0$
(b)
$-y=0$
(c) $x+7 y=0$
(d) $x-7 y=0$
[ IIT 1999]
(90) On the ellipse $4 x^{2}+9 y^{2}=1$, the points at which the tangents are parallel to the line $8 \mathrm{x}=9 \mathrm{y}$ are
$\left(\frac{2}{5}, \frac{1}{5}\right)$
(b) $\left(-\frac{2}{5}, \frac{1}{5}\right)$
(c) $\left(-\frac{2}{5},-\frac{1}{5}\right)$
(d) $\left(\frac{2}{5},-\frac{1}{5}\right)$
[ IIT 1999]
91) If the diagonals of a parallelogram PQRS are along the lines $x+3 y=4$ and $6 x-2 y=7$, then PQRS must be a
(a) rectangle
(b) square
(c) cyclic quadrilateral
(d) rhombus
[ IIT 1998]
(92) The number of common tangents to the circles $x^{2}+y^{2}-6 x-8 y=24$ and $x^{2}+y^{2}=4$ is
(a) 0
(b) 1
(c) 3
(d) 4
[ IIT 1998]
( Answers at the end of all questions)
(93) If $P=(x, y), Q=(3,0)$ and $R=(-3,0)$ and $16 x^{2}+25 y^{2}=400$, then $P Q+P R=$
(a) 8
(b) 6
(c) 10
(d) 12
[ IIT 1998]
(94) If $P(1,2), Q(4,6), R(5,7)$ and $S(a, b)$ are the vertices of a parallelogram PQRS, then
(a) $a=2, b=4$
(b) $a=3, b=4$
(c) $a=2, b=3$
(d) $a=3, b=5$
[ IIT 1998]
(95) If the vertices $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ of a triangle PQR are rational points, which of the following points of the triangle PQR is / are always rational point (s)?
(a) centroid
(b) incentre
(c) circumcentre
(d) orthocentre
[ IIT 1998]
(96) The number of values of $c$ such that the straight line $y=m x+c$ touches the curve $\frac{x^{2}}{4}+y^{2}=1$ is
(a) 0
(b) 1
(c)
(d) infinite
[ IIT 1998]
(97) If the circle $x^{2}+y^{2}=a^{2}$ intersects the hyperbola $x y=c^{2}$ in four points $P\left(x_{1}, y_{1}\right)$, $\mathbf{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathbf{R}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right), \mathrm{S}\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$, then
(a) $x_{1}+x_{2}+x_{3}+x_{4}=0$
(b) $y_{1}+y_{2}+y_{3}+y_{4}=0$
(c) $x_{1} x_{2} x_{3} x_{4}=c^{4}$
(d) $y_{1} y_{2} y_{3} y_{4}=c^{4}$
[ IIT 1998]
(98) The angle between a pair of tangents drawn from a point $P$ to the circle
$x^{2}+y^{2}+4 x-6 y+9 \sin ^{2} \alpha+13 \cos ^{2} \alpha=0$ is $2 \alpha$. The equation of the locus of the point $P$ is
(a) $x^{2}+y^{2}+4 x-6 y+4=0$
(b) $x^{2}+y^{2}+4 x-6 y-9=0$
(c) $x^{2}+y^{2}+4 x-6 y-4=0$
(d) $x^{2}+y^{2}+4 x-6 y+9=0$
[ IIT 1996]
(99) The orthocentre of the triangle formed by the lines $x y=0$ and $x+y=1$ is
( a ) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(b) $\left(\frac{1}{3}, \frac{1}{3}\right)$
(c) $(0,0)$
(d) $\left(\frac{1}{4}, \frac{1}{4}\right)$
[ IIT 1995]
( Answers at the end of all questions)
(100) The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre at $(0,3)$ is
(a) 4
(b) 3
(c) $\sqrt{12}$
(d) $\frac{7}{2}$
[ IIT 1995]
(101) Consider a circle with its centre lying on the focus of the parabola $y^{2}=2 p x$ such that it touches the directrix of the parabola. Then a point of intersection of the circle and the parabola is
(a) $\left(\frac{p}{2}, p\right)$
(b) $\left(\frac{\mathrm{p}}{2},-\mathrm{p}\right)$
(c ) $\left(-\frac{p}{2}, p\right)(d)\left(-\frac{p}{2},-p\right)$
[ IIT 1995]
(102) The locus of the centre of a circle which touches externally the circle $x^{2}+y^{2}-6 x$ $-6 y+14=0$ and also touches the Y -axis is given by the equation
(a) $x^{2}-6 x-10 y+14=0$
(b) $x^{2}-10 x-6 y+14=0$
(c) $y^{2}-6 x-10 y+14=0$
(d) $y^{2}-10 x-6 y+14=0$
[ IIT 1993]
(103) The centre of a circle passing through the points $(0,0),(1,0)$ and touching the circle $x^{2}+y^{2}=9$ is
(a) $\left(\frac{3}{2}, \frac{1}{2}\right)$
(b) $\left(\frac{1}{2}, \frac{3}{2}\right)$
(c) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(d) $\left(\frac{1}{2},-2^{\frac{1}{2}}\right)$
[ IIT 1992]
( 104 ) If the sum of the distances of a point from two perpendicular lines is 1 , then its locus is
(a) square
(b) circle
(c) straight line
(d) two intersecting lines
[ IIT 1992]
(105) Line $L$ has intercepts $a$ and $b$ on the co-ordinate axes. When the axes are rotated through a given angle, keeping the origin fixed, the same line has intercepts $p$ and $q$. Then
(a) $a^{2}+b^{2}=p^{2}+q^{2}$
(b) $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{p^{2}}+\frac{1}{q^{2}}$
(c) $\mathrm{a}^{2}+\mathrm{p}^{2}=\mathrm{b}^{2}+\mathrm{q}^{2}$
(b) $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{q}^{2}}$
[ IIT 1990]
( Answers at the end of all questions)
(106) If the two circles $(x-1)^{2}+(y-3)^{2}=r^{2}$ and $x^{2}+y^{2}-8 x+2 y+8=0$ intersect in two distinct points, then
(a) $2<r<8$
(b) $r<2$
(c) $r=2$
(d) $r>2$
[IIT 1989]
(107) The lines $2 x-y=5$ and $3 x-4 y=7$ are diameters of a circle of area 154 sq. units, then the equation of this circle is
(a) $x^{2}+y^{2}+2 x-2 y=62$
(b) $x^{2}+y^{2}+2 x-2 y=47$
(c) $x^{2}+y^{2}+2 x+2 y=47$
(d) $x^{2}+y^{2}-2 x+2 y=62$
[ IIT 1989]
(108) Let $g(x)$ be a function defined on ( $\mathbf{- 1 , 1} 1$ ). If the area of the equilateral triangle with two of its vertices at $(0,0)$ and $[x, g(x)]$ is $\sqrt{\frac{3}{4}}$, then the function $g(x)$ is
(a) $g(x)= \pm \sqrt{1-x^{2}}$
(b) $g(x)=\sqrt{1-x^{2}}$
(c) $g(x)=-\sqrt{1-x^{2}}$
$g(x)=\sqrt{1+x^{2}}$
[ IIT 1989]
(109) If $P=(1,0), Q=(-1,0)$ and $R=(2,0)$ are three given points, then the locus of the point $S$ satisfying the relation $S Q^{2}+S R^{2}=2 S P^{2}$, is
(a) a straight line parallel to X-axis (b) a circle passing through the origin
( c) a circle with the centre at the origin
(d) a straight line parallel to Y -axis
[ IIT 1988]
(110) If a circle passes through the point ( $a, b$ ) and cuts the circle $x^{2}+y^{2}=k^{2}$ orthogonally, then the equation of the locus of its centre is
(a) $2 a x+2 b y-\left(a^{2}+b^{2}-k^{2}\right)=0$
(b) $2 a x+2 b y-\left(a^{2}-b^{2}+k^{2}\right)=0$
(c) $x^{2}+y^{2}-3 a x-4 b y+\left(a^{2}+b^{2}-k^{2}\right)=0$
(d) $x^{2}+y^{2}-2 a x-3 b y+\left(a^{2}-b^{2}-k^{2}\right)=0$
[ IIT 1988]
(111) The equation of the tangents drawn from the origin to the circle $x^{2}+y^{2}-2 r x-2 h y+h^{2}=0$, are
(a) $x=0$
(b) $\left(h^{2}-r^{2}\right) x-2 r h y=0$
(c) $y=0$
(d) $\left(h^{2}-r^{2}\right) x+2 r h y=0$
[ IIT 1988]
( Answers at the end of all questions)
(112) If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then
(a) a>0,b>0
(b) a>0, b < 0
(c) a<0,b>0
(d) a<0, b < 0
(e) none of these
[IIT 1986]
(113) The points $\left(0, \frac{8}{3}\right),(1,3)$ and $(82,30)$ are vertices of
(a) an obtuse angled triangle
(b) an acute angled triangle
(c) a right angled triangle
(d) an isosceles triangle
[ IIT 1986]
(114) All points lying inside the triangle formed by the points (1, 3), (5, 0) and (-1, 2 ) satisfy
(a) $3 x+2 y \geq 0$
(b) $2 x+y-13 \geq 0$
(c) $2 x-3 y-12 \leq 0$
[ IIT 1986]
(115) Three lines $p x+q y+r=0, q x+r y+p=0$ and $r x+p y+q=0$ are concurrent if
(a) $p_{3}+q+r=0$
b) $p^{2}+q^{2}+r^{2}=p q+q r+r p$
(c) $p^{3}+q^{3}+r^{3}=3 p q r$
d) none of these
[ IIT 1985]
(116) The locus of the midpoints of a chord of the circle $x^{2}+y^{2}=4$ which subtends a right angle at the origin is
(a) $x+y=2$
(b) $x^{2}+y^{2}=1$
(c) $x^{2}+y^{2}=2$
(d) $x+y=1$
[ IIT 1984]
(117) The centre of the circle passing through the point $(0,1)$ and touching the curve $y=x^{2}$ at $(2,4)$ is
( a ) $\left(\frac{-16}{5}, \frac{27}{10}\right)$
(b) $\left(\frac{-16}{7}, \frac{53}{10}\right)$
(c) $\left(\frac{-16}{5}, \frac{53}{10}\right)$
(d) none of these
[ IIT 1983]
(118) The straight line $x+y=0,3 x+y-4=0, x+3 y-4=0$ form a triangle which is
(a) isosceles
(b) right angled
(c) equilateral
(d) none of these
(Answers at the end of all questions)
(119) If $A B$ is a diameter of a circle and $C$ is any point on the circumference of the circle, then
(a) the area of triangle $A B C$ is maximum when it is isosceles
(b) the area of triangle $A B C$ is minimum when it is isosceles
(c) the perimeter of triangle $A B C$ is minimum when it is isosceles
(d) none of these
[IIT 1983]
(120) The equation of the circle passing through ( 1,1 ) and the points of intersection of the circles $x^{2}+y^{2}+13 x-3 y=0$ and $2 x^{2}+2 y^{2}+4 x-7 y-25=0$ is
(a) $4 x^{2}+4 y^{2}-30 x-10 y-25=0$
(b) $4 x^{2}+4 y^{2}+30 x-13 y-25=0$
(c) $4 x^{2}+4 y^{2}-17 x+10 y+25=0$
( d ) none of these
[ IIT 1983]
(121) The equation $\frac{x^{2}}{1-r}-\frac{y^{2}}{1+r}=1, r>1$ represents
(a) an ellipse (b) a hyperbola (c) a circle (d) none of these [ IIT 1981]
(122) Given the four lines with the equations, $x+2 y-3=0,3 x+4 y-7=0$, $2 x+3 y-4=0$ and $4 x+5 y-6=0$
( a ) they are all concurrent (b) they are the sides of a quadrilateral
(c) none of these
[ IIT 1980]
(123) The points $(-a,-b),(0,0),(a, b)$ and $\left(a^{2}, a b\right)$ are
coltinear
vertices of a rectangle
(b) vertices of a parallelogram
(d) none of these
(Answers at the end of all questions)

## Answers

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | $18 \quad 19$ |  | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | a | a | d | c | c | b | d | d | a | d | a | d | c | d | b | a | a | a |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| b | d | d | d | c | c | d | d | c | a | c | a | c | c | c | d | a | d | c | d |


| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{c}$ | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{b}$ | $\mathbf{b}$ | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ | $\mathbf{c}$ | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{a}$ | $\mathbf{d}$ | $\mathbf{b}$ | $\mathbf{a}$ | $\mathbf{a}$ |


| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{b}$ | a | a | c | c | b | a | c | d | b | c | c | a | b | d | d | b | c | d | d |
| $\mathbf{8 1}$ | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 |  |
| c | c | a | c | d | d | b | b | a, $\mathbf{c}$ | b, d | d | b | c | c | a | c | a,b,c,d | d | c |  |


| 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| c | $\mathrm{a}, \mathrm{b}$ | d | d | a | b | d | c | $\mathrm{a}, \mathrm{b}, \mathrm{c}$ | d | a | $\mathrm{a}, \mathrm{b}$ | $\mathrm{b}, \mathrm{c}$ | e |


| 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{a}, \mathrm{~b}, \mathrm{c}$ | $\mathrm{a}, \mathrm{b}, \mathrm{c}$ | c | c | a | a | b | d | c | a |  |  |  |  |  |  |  |

