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Time allowed Three and a half hours.

Each question is worth 10 marks.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then draft your final version
carefully before writing up your best attempt.

Rough work should be handed in, but should be
clearly marked.

• One or two complete solutions will gain far more
credit than partial attempts at all four problems.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Staple all the pages neatly together in the top left
hand corner, with questions 1,2,3,4 in order, and
the cover sheet at the front.

In early March, twenty students eligible to rep-
resent the UK at the International Mathematical
Olympiad will be invited to attend the training
session to be held at Trinity College, Cambridge
(2-6 April). At the training session, students sit
a pair of IMO-style papers and 8 students will be
selected for further training. Those selected will
be expected to participate in correspondence work
and to attend further training. The UK Team of
6 for this summer’s IMO (to be held in Bremen,
Germany 13-22 July) will then be chosen.

Do not turn over until told to do so.
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1. Find all solutions in non-negative integers a, b to
√

a +
√

b =
√

2009.

2. Let ABC be an acute-angled triangle with 6 B = 6 C. Let the
circumcentre be O and the orthocentre be H. Prove that the centre
of the circle BOH lies on the line AB. The circumcentre of a triangle

is the centre of its circumcircle. The orthocentre of a triangle is the

point where its three altitudes meet.

3. Find all functions f from the real numbers to the real numbers which
satisfy

f(x3) + f(y3) = (x + y)(f(x2) + f(y2) − f(xy))

for all real numbers x and y.

4. Given a positive integer n, let b(n) denote the number of positive
integers whose binary representations occur as blocks of consecutive
integers in the binary expansion of n. For example b(13) = 6
because 13 = 11012, which contains as consecutive blocks the binary
representations of 13 = 11012, 6 = 1102, 5 = 1012, 3 = 112, 2 = 102

and 1 = 12.

Show that if n ≤ 2500, then b(n) ≤ 39, and determine the values of n for
which equality holds.


