

B O A R D O F S T U DIES new south wales

2007

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

-Reading time - 5 minutes

- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

BLANK PAGE

Total marks - $\mathbf{1 2 0}$
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{1}{\sqrt{9-4 x^{2}}} d x$.

2
(b) Find $\int \tan ^{2} x \sec ^{2} x d x$.
(c) Evaluate $\int_{0}^{\pi} x \cos x d x$.
(d) Evaluate $\int_{0}^{\frac{3}{4}} \frac{x}{\sqrt{1-x}} d x$.
(e) It can be shown that

$$
\frac{2}{x^{3}+x^{2}+x+1}=\frac{1}{x+1}-\frac{x}{x^{2}+1}+\frac{1}{x^{2}+1} . \text { (Do NOT prove this.) }
$$

Use this result to evaluate $\int_{\frac{1}{2}}^{2} \frac{2}{x^{3}+x^{2}+x+1} d x$.

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=4+i$ and $w=\bar{z}$. Find, in the form $x+i y$,
(i) w
(ii) $w-z$
(iii) $\frac{z}{w}$.
(b) (i) Write $1+i$ in the form $r(\cos \theta+i \sin \theta)$.
(ii) Hence, or otherwise, find $(1+i)^{17}$ in the form $a+i b$, where a and b 3 are integers.
(c) The point P on the Argand diagram represents the complex number z, where 3 z satisfies

$$
\frac{1}{z}+\frac{1}{\bar{z}}=1
$$

Give a geometrical description of the locus of P as z varies.

Question 2 continues on page 5

Question 2 (continued)
(d)

The points P, Q and R on the Argand diagram represent the complex numbers z_{1}, z_{2} and a respectively.

The triangles $O P R$ and $O Q R$ are equilateral with unit sides, so $\left|z_{1}\right|=\left|z_{2}\right|=|a|=1$.
Let $\omega=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$.
(i) Explain why $z_{2}=\omega a$.
(ii) Show that $z_{1} z_{2}=a^{2}$.
(iii) Show that z_{1} and z_{2} are the roots of $z^{2}-a z+a^{2}=0$.

End of Question 2

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the graph of $y=f(x)$. The line $y=x$ is an asymptote.
Draw separate one-third page sketches of the graphs of the following:
(i) $f(-x$
(ii) $f(|x|)$
(iii) $f(x)-x$.
(b) The zeros of $x^{3}-5 x+3$ are α, β and γ.

Find a cubic polynomial with integer coefficients whose zeros are $2 \alpha, 2 \beta$ and 2γ.

Question 3 continues on page 7

Question 3 (continued)
(c)

Use the method of cylindrical shells to find the volume of the solid formed when the shaded region bounded by

$$
y=0, \quad y=\frac{\log _{e} x}{x}, x=1 \text { and } x=e
$$

is rotated about the y-axis.
(d)

A particle P of mass m undergoes uniform circular motion with angular velocity ω in a horizontal circle of radius r about O. It is acted on by the force due to gravity, $m g$, a force F directed at an angle θ above the horizontal and a force N which is perpendicular to F, as shown in the diagram.
(i) By resolving forces horizontally and vertically, show that

$$
N=m g \cos \theta-m r \omega^{2} \sin \theta
$$

(ii) For what values of ω is $N>0$?

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a)

Two circles intersect at A and B.
The lines $L M$ and $P Q$ pass through B, with L and P on one circle and M and Q on the other circle, as shown in the diagram.

Copy or trace this diagram into your writing booklet.
Show that $\angle L A M=\angle P A Q$.
(b) (i) Show that $\sin 3 \theta=3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta$.
(ii) Show that $4 \sin \theta \sin \left(\theta+\frac{\pi}{3}\right) \sin \left(\theta+\frac{2 \pi}{3}\right)=\sin 3 \theta$.
(iii) Write down the maximum value of $\sin \theta \sin \left(\theta+\frac{\pi}{3}\right) \sin \left(\theta+\frac{2 \pi}{3}\right)$.

Question 4 (continued)
(c)

The base of a solid is the region bounded by the curve $y=\log _{\mathrm{e}} x$, the x-axis and the lines $x=1$ and $x=e$, as shown in the diagram.

Vertical cross-sections taken through this solid in a direction parallel to the x-axis are squares. A typical cross-section, $P Q R S$, is shown.

Find the volume of the solid.
(d) The polynomial $P(x)=x^{3}+q x^{2}+r x+s$ has real coefficients. It has three distinct zeros, $\alpha,-\alpha$ and β.
(i) Prove that $q r=s$.
(ii) The polynomial does not have three real zeros. Show that two of the zeros are purely imaginary. (A number is purely imaginary if it is of the form $i y$, with y real and $y \neq 0$.)

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement.
(i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places.
(ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places.
(b)

The points at $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ lie on the same branch of the hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

The tangents at P and Q meet at $T\left(x_{0}, y_{0}\right)$.
(i) Show that the equation of the tangent at P is $\frac{x x_{1}}{a^{2}}-\frac{y y_{1}}{b^{2}}=1$.
(ii) Hence show that the chord of contact, $P Q$, has equation $\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$.
(iii) The chord $P Q$ passes through the focus $S(a e, 0)$, where e is the eccentricity of the hyperbola. Prove that T lies on the directrix of the hyperbola.

Question 5 (continued)
(c) (i) Write $(x-1)(5-x)$ in the form $b^{2}-(x-a)^{2}$, where a and b are real $x-a=b \sin \theta$, or otherwise, evaluate $\int_{1}^{5} \sqrt{(x-1)(5-x)} d x$.
(d)

In the diagram, $A B C D E$ is a regular pentagon with sides of length 1 . The perpendicular to $A C$ through B meets $A C$ at P.

Copy or trace this diagram into your writing booklet.
(i) Let $u=\cos \frac{\pi}{5}$.

Use the cosine rule in $\triangle A C D$ to show that $8 u^{3}-8 u^{2}+1=0$.
(ii) One root of $8 x^{3}-8 x^{2}+1=0$ is $\frac{1}{2}$.

Find the other roots of $8 x^{3}-8 x^{2}+1=0$ and hence find the exact value of $\cos \frac{\pi}{5}$.

End of Question 5

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Use the binomial theorem 1

$$
(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\cdots+b^{n}
$$

to show that, for $n \geq 2$,

$$
2^{n}>\binom{n}{2}
$$

(ii) Hence show that, for $n \geq 2$,

$$
\frac{n+2}{2^{n-1}}<\frac{4 n+8}{n(n-1)}
$$

(iii) Prove by induction that, for integers $n \geq 1$,

$$
1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^{2}+\cdots+n\left(\frac{1}{2}\right)^{n-1}=4-\frac{n+2}{2^{n-1}}
$$

(iv) Hence determine the limiting sum of the series

$$
1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^{2}+\cdots
$$

Question 6 (continued)
(b) A raindrop falls vertically from a high cloud. The distance it has fallen is given by

$$
x=5 \log _{e}\left(\frac{e^{1.4 t}+e^{-1.4 t}}{2}\right)
$$

where x is in metres and t is the time elapsed in seconds.
(i) Show that the velocity of the raindrop, v metres per second, is given by

$$
v=7\left(\frac{e^{1.4 t}-e^{-1.4 t}}{e^{1.4 t}+e^{-1.4 t}}\right)
$$

(ii) Hence show that

$$
v^{2}=49\left(1-e^{-\frac{2 x}{5}}\right)
$$

(iii) Hence, or otherwise, show that

$$
\ddot{x}=9.8-0.2 v^{2} .
$$

(iv) The physical significance of the 9.8 in part (iii) is that it represents the acceleration due to gravity.

What is the physical significance of the term $-0.2 v^{2}$?
(v) Estimate the velocity at which the raindrop hits the ground.

End of Question 6

BLANK PAGE

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that $\sin x<x$ for $x>0$. 2
(ii) Let $f(x)=\sin x-x+\frac{x^{3}}{6}$. Show that the graph of $y=f(x)$ is concave up for $x>0$.
(iii) By considering the first two derivatives of $f(x)$, show that

$$
\sin x>x-\frac{x^{3}}{6} \text { for } x>0
$$

Question 7 continues on page 16

Question 7 (continued)
(b)

In the diagram the secant $P Q$ of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meets the directrix at R. Perpendiculars from P and Q to the directrix meet the directrix at U and V respectively. The focus of the ellipse which is nearer to R is at S.

Copy or trace this diagram into your writing booklet.
(i) Prove that $\frac{P R}{Q R}=\frac{P U}{Q V}$.
(ii) Prove that $\frac{P U}{Q V}=\frac{P S}{Q S}$.
(iii) Let $\angle P S Q=\phi, \angle R S Q=\theta$ and $\angle P R S=\alpha$.

By considering the sine rule in $\triangle P R S$ and $\triangle Q R S$, and applying the results of part (i) and part (ii), show that $\phi=\pi-2 \theta$.
(iv) Let Q approach P along the circumference of the ellipse, so that $\phi \rightarrow 0$.

What is the limiting value of θ ?

Question 7 (continued)
(c)

The diagram shows an ellipse with eccentricity e and foci S and S^{\prime}.
The tangent at P on the ellipse meets the directrices at R and W. The perpendicular to the directrices through P meets the directrices at N and M as shown. Both $\angle P S R$ and $\angle P S^{\prime} W$ are right angles.

Let $\angle M P W=\angle N P R=\beta$.
(i) Show that

$$
\frac{P S}{P R}=e \cos \beta
$$

where e is the eccentricity of the ellipse.
(ii) By also considering $\frac{P S^{\prime}}{P W}$ show that $\angle R P S=\angle W P S^{\prime}$.

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Using a suitable substitution, show that $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$.
(ii) A function $f(x)$ has the property that $f(x)+f(a-x)=f(a)$.

Using part (i), or otherwise, show that

$$
\int_{0}^{a} f(x) d x=\frac{a}{2} f(a)
$$

(b) (i) Let n be a positive integer. Show that if $z^{2} \neq 1$ then

$$
1+z^{2}+z^{4}+\cdots+z^{2 n-2}=\left(\frac{z^{n}-z^{-n}}{z-z^{-1}}\right) z^{n-1}
$$

(ii) By substituting $z=\cos \theta+i \sin \theta$, where $\sin \theta \neq 0$, into part (i), show that

$$
\begin{aligned}
1+\cos 2 \theta & +\cdots+\cos (2 n-2) \theta+i[\sin 2 \theta+\cdots+\sin (2 n-2) \theta] \\
& =\frac{\sin n \theta}{\sin \theta}[\cos (n-1) \theta+i \sin (n-1) \theta]
\end{aligned}
$$

(iii) Suppose $\theta=\frac{\pi}{2 n}$. Using part (ii), show that

$$
\sin \frac{\pi}{n}+\sin \frac{2 \pi}{n}+\cdots+\sin \frac{(n-1) \pi}{n}=\cot \frac{\pi}{2 n}
$$

Question 8 (continued)
(c)

The diagram shows a regular n-sided polygon with vertices $X_{1}, X_{2}, \cdots, X_{n}$. Each side has unit length. The length d_{k} of the 'diagonal' $X_{n} X_{k}$ where $k=1,2, \cdots, n-1$ is given by

$$
d_{k}=\frac{\sin \frac{k \pi}{n}}{\sin \frac{\pi}{n}}
$$

(Do NOT prove this.)
(i) Show, using the result in part (b) (iii), that

$$
d_{1}+\cdots+d_{n-1}=\frac{1}{2 \sin ^{2} \frac{\pi}{2 n}}
$$

(ii) Let p be the perimeter of the polygon and $q=\frac{1}{n}\left(d_{1}+\cdots+d_{n-1}\right)$. Show that

$$
\frac{p}{q}=2\left(n \sin \frac{\pi}{2 n}\right)^{2}
$$

(iii) Hence calculate the limiting value of $\frac{p}{q}$ as $n \rightarrow \infty$.

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

