

B O A R D O F S T U DIES
new south wales

2006

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

-Reading time - 5 minutes

- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

BLANK PAGE

Total marks - 84
Attempt Questions 1-7
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{d x}{49+x^{2}}$.

2
(b) Using the substitution $u=x^{4}+8$, or otherwise, find $\int x^{3} \sqrt{x^{4}+8} d x$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 5 x}{3 x}$.
(d) Using the sum of two cubes, simplify:

$$
\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}-1
$$

$$
\text { for } 0<\theta<\frac{\pi}{2} \text {. }
$$

(e) For what values of b is the line $y=12 x+b$ tangent to $y=x^{3}$?

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Let $f(x)=\sin ^{-1}(x+5)$.
(i) State the domain and range of the function $f(x)$.
(ii) Find the gradient of the graph of $y=f(x)$ at the point where $x=-5$.
(iii) Sketch the graph of $y=f(x)$.
(b) (i) By applying the binomial theorem to $(1+x)^{n}$ and differentiating, show that

$$
n(1+x)^{n-1}=\binom{n}{1}+2\binom{n}{2} x+\cdots+r\binom{n}{r} x^{r-1}+\cdots+n\binom{n}{n} x^{n-1}
$$

(ii) Hence deduce that

$$
n 3^{n-1}=\binom{n}{1}+\cdots+r\binom{n}{r} 2^{r-1}+\cdots+n\binom{n}{n} 2^{n-1}
$$

Question 2 (continued)
(c)

The points $P\left(2 a p, a p^{2}\right), Q\left(2 a q, a q^{2}\right)$ and $R\left(2 a r, a r^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The chord $Q R$ is perpendicular to the axis of the parabola. The chord $P R$ meets the axis of the parabola at U.

The equation of the chord $P R$ is $y=\frac{1}{2}(p+r) x-a p r$. (Do NOT prove this.)

The equation of the tangent at P is $y=p x-a p^{2}$.
(Do NOT prove this.)
(i) Find the coordinates of U.
(ii) The tangents at P and Q meet at the point T. Show that the coordinates of T are $(a(p+q), a p q)$.
(iii) Show that $T U$ is perpendicular to the axis of the parabola.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int_{0}^{\frac{\pi}{4}} \sin ^{2} x d x$.

2

1 the line $y=x$ meet at a point P whose x-coordinate is between 1.5 and 2 .
(ii) Use one application of Newton's method, starting at $x=1.5$, to find an approximation to the x-coordinate of P. Give your answer correct to two decimal places.
(c) Sophie has five coloured blocks: one red, one blue, one green, one yellow and one white. She stacks two, three, four or five blocks on top of one another to form a vertical tower.
(i) How many different towers are there that she could form that are three blocks high?
(ii) How many different towers can she form in total?

Question 3 continues on page 7

Question 3 (continued)
(d)

The points P, Q and T lie on a circle. The line $M N$ is tangent to the circle at T with M chosen so that $Q M$ is perpendicular to $M N$. The point K on $P Q$ is chosen so that $T K$ is perpendicular to $P Q$ as shown in the diagram.
(i) Show that $Q K T M$ is a cyclic quadrilateral.
(ii) Show that $\angle K M T=\angle K Q T$.
(iii) Hence, or otherwise, show that $M K$ is parallel to $T P$.

End of Question 3

BLANK PAGE

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) The cubic polynomial $P(x)=x^{3}+r x^{2}+s x+t$, where r, s and t are real numbers, has three real zeros, $1, \alpha$ and $-\alpha$.
(i) Find the value of r.
(b) A particle is undergoing simple harmonic motion on the x-axis about the origin. It is initially at its extreme positive position. The amplitude of the motion is 18 and the particle returns to its initial position every 5 seconds.
(i) Write down an equation for the position of the particle at time t seconds.
(ii) How long does the particle take to move from a rest position to the point halfway between that rest position and the equilibrium position?
(c) A particle is moving so that $\ddot{x}=18 x^{3}+27 x^{2}+9 x$.

Initially $x=-2$ and the velocity, v, is -6 .
(i) Show that $v^{2}=9 x^{2}(1+x)^{2}$.
(ii) Hence, or otherwise, show that

$$
\int \frac{1}{x(1+x)} d x=-3 t
$$

(iii) It can be shown that for some constant c,

$$
\log _{e}\left(1+\frac{1}{x}\right)=3 t+c . \quad \text { (Do NOT prove this.) }
$$

Using this equation and the initial conditions, find x as a function of t.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Show that $y=10 e^{-0.7 t}+3$ is a solution of $\frac{d y}{d t}=-0.7(y-3)$.
(c)

A hemispherical bowl of radius $r \mathrm{~cm}$ is initially empty. Water is poured into it at a constant rate of $k \mathrm{~cm}^{3}$ per minute. When the depth of water in the bowl is $x \mathrm{~cm}$, the volume, $V \mathrm{~cm}^{3}$, of water in the bowl is given by

$$
V=\frac{\pi}{3} x^{2}(3 r-x) . \quad \text { (Do NOT prove this.) }
$$

(i) Show that $\frac{d x}{d t}=\frac{k}{\pi x(2 r-x)}$.
(ii) Hence, or otherwise, show that it takes 3.5 times as long to fill the bowl to the point where $x=\frac{2}{3} r$ as it does to fill the bowl to the point where $x=\frac{1}{3} r$.

Question 5 (continued)
(d) (i) Use the fact that $\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$ to show that

$$
1+\tan n \theta \tan (n+1) \theta=\cot \theta(\tan (n+1) \theta-\tan n \theta)
$$

(ii) Use mathematical induction to prove that, for all integers $n \geq 1$,

$$
\tan \theta \tan 2 \theta+\tan 2 \theta \tan 3 \theta+\cdots+\tan n \theta \tan (n+1) \theta=-(n+1)+\cot \theta \tan (n+1) \theta
$$

End of Question 5

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) Two particles are fired simultaneously from the ground at time $t=0$.

Particle 1 is projected from the origin at an angle $\theta, 0<\theta<\frac{\pi}{2}$, with an initial velocity V.

Particle 2 is projected vertically upward from the point A, at a distance a to the right of the origin, also with an initial velocity of V.

It can be shown that while both particles are in flight, Particle 1 has equations of motion:

$$
\begin{aligned}
& x=V t \cos \theta \\
& y=V t \sin \theta-\frac{1}{2} g t^{2},
\end{aligned}
$$

and Particle 2 has equations of motion:

$$
\begin{aligned}
& x=a \\
& y=V t-\frac{1}{2} g t^{2} .
\end{aligned}
$$

Do NOT prove these equations of motion.
Let L be the distance between the particles at time t.

Question 6 continues on page 13

Question 6 (continued)
(i) Show that, while both particles are in flight,

$$
L^{2}=2 V^{2} t^{2}(1-\sin \theta)-2 a V t \cos \theta+a^{2}
$$

(ii) An observer notices that the distance between the particles in flight first decreases, then increases.

Show that the distance between the particles in flight is smallest when $t=\frac{a \cos \theta}{2 V(1-\sin \theta)}$ and that this smallest distance is $a \sqrt{\frac{1-\sin \theta}{2}}$.
(iii) Show that the smallest distance between the two particles in flight occurs while Particle 1 is ascending if $V>\sqrt{\frac{a g \cos \theta}{2 \sin \theta(1-\sin \theta)}}$.
(b) In an endurance event, the probability that a competitor will complete the course is p and the probability that a competitor will not complete the course is $q=1-p$. Teams consist of either two or four competitors. A team scores points if at least half its members complete the course.
(i) Show that the probability that a four-member team will have at least three of its members not complete the course is $4 p q^{3}+q^{4}$.
(ii) Hence, or otherwise, find an expression in terms of q only for the probability that a four-member team will score points.
(iii) Find an expression in terms of q only for the probability that a two-member team will score points.
(iv) Hence, or otherwise, find the range of values of q for which a two-member team is more likely than a four-member team to score points.

End of Question 6

Question 7 (12 marks) Use a SEPARATE writing booklet.

A gutter is to be formed by bending a long rectangular metal strip of width w so that the cross-section is an arc of a circle.

Let r be the radius of the arc and 2θ the angle at the centre, O, so that the cross-sectional area, A, of the gutter is the area of the shaded region in the diagram on the right.

(a) Show that, when $0<\theta \leq \frac{\pi}{2}$, the cross-sectional area is

$$
A=r^{2}(\theta-\operatorname{si} \theta \cos)
$$

(b) The formula in part (a) for A is true for $0<\theta<\pi$.

By first expressing r in terms of w and θ, and then differentiating, show that

$$
\frac{d A}{d \theta}=\frac{w^{2} \cos \theta(\sin \theta-\theta \cos \theta)}{2 \theta^{3}}
$$

$$
\text { for } 0<\theta<\pi \text {. }
$$

Question 7 (continued)
(c) Let $g(\theta)=\sin \theta-\theta \cos \theta$.

By considering $g^{\prime}(\theta)$, show that $g(\theta)>0$ for $0<\theta<\pi$.
(d) Show that there is exactly one value of θ in the interval $0<\theta<\pi$ for which $\frac{d A}{d \theta}=0$.
(e) Show that the value of θ for which $\frac{d A}{d \theta}=0$ gives the maximum cross-sectional 2 area. Find this area in terms of w.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

