

B O A R D OF STIDIES<br>new south wales

2005
HIGHER SCHOOL CERTIFICATE EXAMINATION

## Mathematics Extension 1

## General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question


## Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

BLANK PAGE

Total marks - 84
Attempt Questions 1-7
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int \frac{1}{x^{2}+49} d x$.

1

2
(c) State the domain and range of $y=\cos ^{-1}\left(\frac{x}{4}\right)$.
(d) Using the substitution $u=2 x^{2}+1$, or otherwise, find $\int x\left(2 x^{2}+1\right)^{\frac{5}{4}} d x$.
(e) The point $P(1,4)$ divides the line segment joining $A(-1,8)$ and $B(x, y)$ internally in the ratio $2: 3$. Find the coordinates of the point $B$.
(f) The acute angle between the lines $y=3 x+5$ and $y=m x+4$ is $45^{\circ}$. Find the two possible values of $m$.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\frac{d}{d x}\left(2 \sin ^{-1} 5 x\right)$.

2
(b) Use the binomial theorem to find the term independent of $x$ in the expansion of $\left(2 x-\frac{1}{x^{2}}\right)^{12}$.
(c) (i) Differentiate $e^{3 x}(\cos x-3 \sin x)$.
(ii) Hence, or otherwise, find $\int e^{3 x} \sin x d x$.
(d) A salad, which is initially at a temperature of $25^{\circ} \mathrm{C}$, is placed in a refrigerator that has a constant temperature of $3^{\circ} \mathrm{C}$. The cooling rate of the salad is proportional to the difference between the temperature of the refrigerator and the temperature, $T$, of the salad. That is, $T$ satisfies the equation

$$
\frac{d T}{d t}=-k(T-3)
$$

where $t$ is the number of minutes after the salad is placed in the refrigerator.
(i) Show that $T=3+A e^{-k t}$ satisfies this equation.
(ii) The temperature of the salad is $11^{\circ} \mathrm{C}$ after 10 minutes. Find the 3

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) (i) Show that the function $g(x)=x^{2}-\log _{e}(x+1)$ has a zero between 0.7 and 0.9.
(ii) Use the method of halving the interval to find an approximation to this zero of $g(x)$, correct to one decimal place.
(b) (i) By expanding the left-hand side, show that

$$
\sin (5 x+4 x)+\sin (5 x-4 x)=2 \sin 5 x \cos 4 x .
$$

(ii) Hence find $\int \sin 5 x \cos 4 x d x$.
(c) Use the definition of the derivative, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, to find $f^{\prime}(x)$ when $f(x)=x^{2}+5 x$.
(d)


In the circle centred at $O$ the chord $A B$ has length 7. The point $E$ lies on $A B$ and $A E$ has length 4. The chord $C D$ passes through $E$.

Let the length of $C D$ be $\ell$ and the length of $D E$ be $x$.
(i) Show that $x^{2}-\ell x+12=0$.
(ii) Find the length of the shortest chord that passes through $E$.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos x \sin ^{2} x d x$.
(b) By making the substitution $t=\tan \frac{\theta}{2}$, or otherwise, show that

$$
\operatorname{cosec} \theta+\cot \theta=\cot \frac{\theta}{2}
$$

(c) The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The equation of the normal to the parabola at $P$ is $x+p y=2 a p+a p^{3}$ and the equation of the normal at $Q$ is similarly given by $x+q y=2 a q+a q^{3}$.
(i) Show that the normals at $P$ and $Q$ intersect at the point $R$ whose coordinates are

$$
\left(-a p q[p+q], a\left[p^{2}+p q+q^{2}+2\right]\right)
$$

(ii) The equation of the chord $P Q$ is $y=\frac{1}{2}(p+q) x-a p q$. (Do NOT show this.) If the chord $P Q$ passes through $(0, a)$, show that $p q=-1$.
(iii) Find the equation of the locus of $R$ if the chord $P Q$ passes through $(0, a)$.
(d) Use the principle of mathematical induction to show that $4^{n}-1-7 n>0$ for all integers $n \geq 2$.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve $y=\sin 2 x$, the $x$-axis and the line $x=\frac{\pi}{8}$ is rotated about the $x$-axis.
(b) Two chords of a circle, $A B$ and $C D$, intersect at $E$. The perpendiculars to $A B$ at $A$ and $C D$ at $D$ intersect at $P$. The line $P E$ meets $B C$ at $Q$, as shown in the diagram.

(i) Explain why DPAE is a cyclic quadrilateral.
(ii) Prove that $\angle A P E=\angle A B C$.
(iii) Deduce that $P Q$ is perpendicular to $B C$.
(c) A particle moves in a straight line and its position at time $t$ is given by

$$
x=5+\sqrt{3} \sin 3 t-\cos 3 t
$$

(i) Express $\sqrt{3} \sin 3 t-\cos 3 t$ in the form $R \sin (3 t-\alpha)$, where $\alpha$ is in radians.
(ii) The particle is undergoing simple harmonic motion. Find the amplitude and the centre of the motion.
(iii) When does the particle first reach its maximum speed after time $t=0$ ?

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) There are five matches on each weekend of a football season. Megan takes part in a competition in which she earns one point if she picks more than half of the winning teams for a weekend, and zero points otherwise. The probability that Megan correctly picks the team that wins any given match is $\frac{2}{3}$.
(i) Show that the probability that Megan earns one point for a given weekend is 0.7901 , correct to four decimal places.
(ii) Hence find the probability that Megan earns one point every week of the eighteen-week season. Give your answer correct to two decimal places.
(iii) Find the probability that Megan earns at most 16 points during the eighteen-week season. Give your answer correct to two decimal places.

Question 6 (continued)
(b) An experimental rocket is at a height of 5000 m , ascending with a velocity of $200 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of $45^{\circ}$ to the horizontal, when its engine stops.


After this time, the equations of motion of the rocket are:

$$
\begin{aligned}
& x=200 t \\
& y=-4.9 t^{2}+200 t+5000
\end{aligned}
$$

where $t$ is measured in seconds after the engine stops. (Do NOT show this.)
(i) What is the maximum height the rocket will reach, and when will it reach this height?
(ii) The pilot can only operate the ejection seat when the rocket is descending at an angle between $45^{\circ}$ and $60^{\circ}$ to the horizontal. What are the earliest and latest times that the pilot can operate the ejection seat?
(iii) For the parachute to open safely, the pilot must eject when the speed of the rocket is no more than $350 \mathrm{~m} \mathrm{~s}^{-1}$. What is the latest time at which the pilot can eject safely?

## End of Question 6

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) An oil tanker at $T$ is leaking oil which forms a circular oil slick. An observer is measuring the oil slick from a position $P, 450$ metres above sea level and 2 kilometres horizontally from the centre of the oil slick.

(i) At a certain time the observer measures the angle, $\alpha$, subtended by the diameter of the oil slick, to be 0.1 radians. What is the radius, $r$, at this time?
(ii) At this time, $\frac{d \alpha}{d t}=0.02$ radians per hour. Find the rate at which the radius of the oil slick is growing.
(b) Let $f(x)=A x^{3}-A x+1$, where $A>0$.
(i) Show that $f(x)$ has stationary points at $x= \pm \frac{\sqrt{3}}{3}$.
(ii) Show that $f(x)$ has exactly one zero when $A<\frac{3 \sqrt{3}}{2}$.
(iii) By observing that $f(-1)=1$, deduce that $f(x)$ does not have a zero in the interval $-1 \leq x \leq 1$ when $0<A<\frac{3 \sqrt{3}}{2}$.
(iv) Let $g(\theta)=2 \cos \theta+\tan \theta$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.

By calculating $g^{\prime}(\theta)$ and applying the result in part (iii), or otherwise, show that $g(\theta)$ does not have any stationary points.
(v) Hence, or otherwise, deduce that $g(\theta)$ has an inverse function.

## End of paper

BLANK PAGE

## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

