

B OARD OF STUDIES new south wales

2004

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

-Reading time - 5 minutes

- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Total marks - $\mathbf{1 2 0}$
Attempt Questions 1-8
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) Use integration by parts to find $\int x e^{3 x} d x$.

2
(b) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos ^{3} x} d x$.

3
(c) By completing the square, find $\int \frac{d x}{\sqrt{5+4 x-x^{2}}}$.
(d) (i) Find real numbers a and b such that

$$
\frac{x^{2}-7 x+4}{(x+1)(x-1)^{2}} \equiv \frac{a}{x+1}+\frac{b}{x-1}-\frac{1}{(x-1)^{2}} .
$$

(ii) Hence find $\int \frac{x^{2}-7 x+4}{(x+1)(x-1)^{2}} d x$.
(e) Use the substitution $x=2 \sin \theta$ to find $\int_{0}^{1} \frac{x^{2}}{\sqrt{4-x^{2}}} d x$.

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=1+2 i$ and $w=3-i$.

Find, in the form $x+i y$,
(i) $z w$
(ii) $\overline{\left(\frac{10}{z}\right)}$.
(b) Let $\alpha=1+i \sqrt{3}$ and $\beta=1+i$.
(i) Find $\frac{\alpha}{\beta}$, in the form $x+i y$.
(ii) Express α in modulus-argument form.
(iii) Given that β has the modulus-argument form

$$
\beta=\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

find the modulus-argument form of $\frac{\alpha}{\beta}$.
(iv) Hence find the exact value of $\sin \frac{\pi}{12}$.
(c) Sketch the region in the complex plane where the inequalities

$$
|z+\bar{z}| \leq 1 \text { and }|z-i| \leq 1
$$

hold simultaneously.

Question 2 continues on page 4

Question 2 (continued)
(d) The diagram shows two distinct points A and B that represent the complex numbers z and w respectively. The points A and B lie on the circle of radius r centred at O. The point C representing the complex number $z+w$ also lies on this circle.

Copy the diagram into your writing booklet.
(i) Using the fact that C lies on the circle, show geometrically that

$$
\angle A O B=\frac{2 \pi}{3} .
$$

(ii) Hence show that $z^{3}=w^{3}$.
(iii) Show that $z^{2}+w^{2}+z w=0$.

End of Question 2

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a) Sketch the curve $y=\frac{4 x^{2}}{x^{2}-9}$ showing all asymptotes.
(b) The diagram shows the graph of $y=f(x)$.

Draw separate one-third page sketches of the graphs of the following:
(i) $\quad y=|f(x)|$
(ii) $\quad y=(f(x))^{2}$
(iii) $y=\frac{1}{\sqrt{f(x)}}$.
(c) Find the equation of the tangent to the curve defined by $x^{2}-x y+y^{3}=5$ at the 3 point $(2,-1)$.

Question 3 continues on page 6

Question 3 (continued)
(d) The base of a solid is the region in the $x y$ plane enclosed by the curves $y=x^{4}$, $y=-x^{4}$ and the line $x=2$. Each cross-section perpendicular to the x-axis is an equilateral triangle.

(i) Show that the area of the triangular cross-section at $x=h$ is $\sqrt{3} h^{8}$.
(ii) Hence find the volume of the solid.

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a) Let α, β, and γ be the zeros of the polynomial $p(x)=3 x^{3}+7 x^{2}+11 x+51$.
(i) Find $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
(ii) Find $\alpha^{2}+\beta^{2}+\gamma^{2}$.
(iii) Using part (ii), or otherwise, determine how many of the zeros of $p(x)$ are real. Justify your answer.
(b) The vertices of an acute-angled triangle $A B C$ lie on a circle. The perpendiculars from A, B and C meet $B C, A C$ and $A B$ at D, E and F respectively. These perpendiculars meet at H.

The perpendiculars $A D, B E$ and $C F$ are produced to meet the circle at K, L and M respectively.

(i) Prove that $\angle A H E=\angle D C E$.
(ii) Deduce that $A H=A L$.
(iii) State a similar result for triangle $A M H$.
(iv) Show that the length of the arc $B K C$ is half the length of the arc $M K L$.

Question 4 (continued)
(c)

The point P lies on the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. The chord through P and the focus $S(a e, 0)$ meets the ellipse at Q. The tangents to the ellipse at P and Q meet at the point $T\left(x_{0}, y_{0}\right)$, so the equation of $P Q$ is $\frac{x x_{0}}{a^{2}}+\frac{y y_{0}}{b^{2}}=1$. (Do NOT prove this.)
(i) Using the equation of $P Q$, show that T lies on the directrix.

1

The point P is now chosen so that T also lies on the x-axis.
(ii) What is the value of the ratio $\frac{P S}{S T}$?

2
(iii) Show that $\angle P T Q$ is less than a right angle.
(iv) Show that the area of triangle $P Q T$ is $b^{2}\left(\frac{1}{e}-e\right)$.

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Let $a>0$. Find the points where the line $y=a x$ and the curve $y=x(x-a)$ intersect.
(ii) Let R be the region in the plane for which $x(x-a) \leq y \leq a x$. Sketch R.
(iii) A solid is formed by rotating the region R about the line $x=-2 a$. Use the method of cylindrical shells to find the volume of the solid.
(b) (i) In how many ways can n students be placed in two distinct rooms so that neither room is empty?
(ii) In how many ways can five students be placed in three distinct rooms so 2 that no room is empty?

Question 5 continues on page 10

Question 5 (continued)
(c) A smooth sphere with centre O and radius R is rotating about its vertical diameter at a uniform angular velocity, ω radians per second. A marble is free to roll around the inside of the sphere.

Assume that the marble can be considered as a point P which is acted upon by gravity and the normal reaction force N from the sphere. The marble describes a horizontal circle of radius r with the same uniform angular velocity, ω radians per second. Let the angle between $O P$ and the vertical diameter be θ.
(i) Explain why $m r \omega^{2}=N \sin \theta$ and $m g=N \cos \theta$.
(ii) Show that either $\cos \theta=\frac{g}{R \omega^{2}}$ or $\theta=0$.
(iii) Hence, or otherwise, show that if $\theta \neq 0$ then $\omega>\sqrt{\frac{g}{R}}$.

End of Question 5

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that 2

$$
\int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x=\frac{\pi}{2}
$$

(ii) By making the substitution $x=\pi-u$, find

$$
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

(b) A particle is released from the origin O with an initial velocity of $A \mathrm{~ms}^{-1}$ directed vertically downward. The particle is subject to a constant gravitational force and a resistance which is proportional to the velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, of the particle.

Let x be the displacement in metres of the particle below O at time t seconds after the release of the particle, so that the equation of motion is

$$
\ddot{x}=g-k v,
$$

where $g \mathrm{~ms}^{-2}$ is the acceleration due to gravity.
(i) The terminal velocity of the particle is $B \mathrm{~m} \mathrm{~s}^{-1}$. Show that $k=\frac{g}{B}$.
(ii) Verify that v satisfies the equation $\frac{d}{d t}\left(v e^{k t}\right)=g e^{k t}$.
(iii) Hence show that the velocity of the particle is given by

$$
v=B-(B-A) e^{-\frac{g t}{B}}
$$

(iv) Deduce that $x=B t-\frac{B}{g}(B-A)\left(1-e^{-\frac{g t}{B}}\right)$.

Question 6 (continued)

At the same time as the particle is released from O, an identical particle is released from the point P which is h metres below O. The second particle has an initial velocity of $A \mathrm{~m} \mathrm{~s}^{-1}$ directed vertically upward.

Its displacement below O is given by $x=h+B t-\frac{B}{g}(B+A)\left(1-e^{-\frac{g t}{B}}\right)$.
(Do NOT prove this.)
(v) Suppose that the two particles meet after T seconds. Show that

$$
T=\frac{B}{g} \log _{e}\left(\frac{2 A B}{2 A B-g h}\right)
$$

(vi) The value of A can be varied. What condition must A satisfy so that the 1 two particles can meet?

End of Question 6

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Let a be a positive real number. Show that $a+\frac{1}{a} \geq 2$.
(ii) Let n be a positive integer and $a_{1}, a_{2}, \ldots, a_{n}$ be n positive real numbers. Prove by induction that $\left(a_{1}+a_{2}+\ldots+a_{n}\right)\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right) \geq n^{2}$.
(iii) Hence show that $\operatorname{cosec}^{2} \theta+\sec ^{2} \theta+\cot ^{2} \theta \geq 9 \cos ^{2} \theta$.
(b) Let α be a real number and suppose that z is a complex number such that

$$
z+\frac{1}{z}=2 \cos \alpha
$$

(i) By reducing the above equation to a quadratic equation in z, solve for z and use de Moivre's theorem to show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \alpha
$$

(ii) Let $w=z+\frac{1}{z}$. Prove that

$$
w^{3}+w^{2}-2 w-2=\left(z+\frac{1}{z}\right)+\left(z^{2}+\frac{1}{z^{2}}\right)+\left(z^{3}+\frac{1}{z^{3}}\right) .
$$

(iii) Hence, or otherwise, find all solutions of

$$
\cos \alpha+\cos 2 \alpha+\cos 3 \alpha=0
$$

in the range $0 \leq \alpha \leq 2 \pi$.

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) Let $P\left(p, \frac{1}{p}\right)$ and $Q\left(q, \frac{1}{q}\right)$ be points on the hyperbola $y=\frac{1}{x}$ with $p>q>0$. Let P^{\prime} be the point $(p, 0)$ and Q^{\prime} be the point $(q, 0)$. The shaded region $O P Q$ in Figure 1 is bounded by the lines $O P, O Q$ and the hyperbola. The shaded region $Q^{\prime} Q P P^{\prime}$ in Figure 2 is bounded by the lines $Q Q^{\prime}, P P^{\prime}, P^{\prime} Q^{\prime}$ and the hyperbola.

(i) Find the area of triangle $O P P^{\prime}$.
(ii) Prove that the area of the shaded region $O P Q$ is equal to the area of the shaded region $Q^{\prime} Q P P^{\prime}$.

Let M be the midpoint of the chord $P Q$ and $R\left(r, \frac{1}{r}\right)$ be the intersection of the line $O M$ with the hyperbola. Let R^{\prime} be the point $(r, 0)$, as shown in Figure 3.

(iii) By using similar triangles, or otherwise, prove that $r^{2}=p q$. of equal area.

Question 8 (continued)
(b) Let $I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} x d x$ and let $J_{n}=(-1)^{n} I_{2 n}$ for $n=0,1,2, \ldots$
(i) Show that $I_{n}+I_{n+2}=\frac{1}{n+1}$.
(ii) Deduce that $J_{n}-J_{n-1}=\frac{(-1)^{n}}{2 n-1}$ for $n \geq 1$.
(iii) Show that $J_{m}=\frac{\pi}{4}+\sum_{n=1}^{m} \frac{(-1)^{n}}{2 n-1}$.
(iv) Use the substitution $u=\tan x$ to show that $I_{n}=\int_{0}^{1} \frac{u^{n}}{1+u^{2}} d u$.
(v) Deduce that $0 \leq I_{n} \leq \frac{1}{n+1}$ and conclude that $J_{n} \rightarrow 0$ as $n \rightarrow \infty$.

End of paper

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

