

BOARD OF STUDIES

2003

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Total marks – 120 Attempt Questions 1–8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.

(a) Evaluate
$$\int_0^1 \frac{e^x}{\left(1+e^x\right)^2} dx$$
. 2

(b) Use integration by parts to find

$$\int x^3 \log_e x \, dx \; .$$

(c) By completing the square and using the table of standard integrals, find

$$\int \frac{dx}{\sqrt{x^2 - 2x + 5}} \, dx$$

$$\frac{5x^2 - 3x + 13}{(x-1)(x^2 + 4)} \equiv \frac{a}{x-1} + \frac{bx-1}{x^2 + 4}.$$

(ii) Find
$$\int \frac{5x^2 - 3x + 13}{(x-1)(x^2 + 4)} dx$$
. 2

(e) Use the substitution $x = 3\sin\theta$ to evaluate

$$\int_{0}^{\frac{3}{\sqrt{2}}} \frac{dx}{\left(9-x^{2}\right)^{\frac{3}{2}}} \, .$$

2

Marks

2

3

Question 2 (15 marks) Use a SEPARATE writing booklet.

(a) Let z=2+i and w=1-i.

Find, in the form x + iy,

- (i) $z\overline{w}$ 1 (ii) $\frac{4}{z}$.
- (b) Let $\alpha = -1 + i$.

(i)	Express α in modulus-argument form.	2
(ii)	Show that α is a root of the equation $z^4 + 4 = 0$.	1
(iii)	Hence, or otherwise, find a real quadratic factor of the polynomial $z^4 + 4$.	2

(c) Sketch the region in the complex plane where the inequalities **3**

$$|z-1-i| < 2$$
 and $0 < \arg(z-1-i) < \frac{\pi}{4}$

hold simultaneously.

- (d) By applying de Moivre's theorem and by also expanding $(\cos \theta + i \sin \theta)^5$, **3** express $\cos 5\theta$ as a polynomial in $\cos \theta$.
- (e) Suppose that the complex number z lies on the unit circle, and $0 \le \arg(z) \le \frac{\pi}{2}$. 2 Prove that $2 \arg(z+1) = \arg(z)$.

3

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a) The diagram shows the graph of y = f(x).

Draw separate one-third page sketches of the graphs of the following:

(i)
$$y = \frac{1}{f(x)}$$
 2
(ii) $y = f(x) + |f(x)|$ 2

(iii)
$$y = (f(x))^2$$
 1

(iv)
$$y = e^{f(x)}$$
. 2

(b) Find the eccentricity, foci and the equations of the directrices of the ellipse

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

Question 3 continues on page 5

2

Question 3 (continued)

(c) The region bounded by the curve y = (x - 1)(3 - x) and the x-axis is rotated about the line x = 3 to form a solid. When the region is rotated, the horizontal line segment ℓ at height y sweeps out an annulus.

- (i) Show that the area of the annulus at height y is given by $4\pi\sqrt{1-y}$. 3
- (ii) Find the volume of the solid.

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.

(a) A particle P of mass m moves with constant angular velocity ω on a circle of radius r. Its position at time t is given by:

$$x = r\cos\theta$$
$$y = r\sin\theta,$$

where $\theta = \omega t$.

- (i) Show that there is an inward radial force of magnitude $mr\omega^2$ acting on *P*. **3**
- (ii) A telecommunications satellite, of mass *m*, orbits Earth with constant angular velocity ω at a distance *r* from the centre of Earth. The gravitational force exerted by Earth on the satellite is $\frac{Am}{r^2}$, where *A* is a constant. By considering all other forces on the satellite to be negligible, show that

$$r = \sqrt[3]{\frac{A}{\omega^2}}.$$

(b) (i) Derive the equation of the tangent to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

at the point P ($a \sec \theta$, $b \tan \theta$).

(ii) Show that the tangent intersects the asymptotes of the hyperbola at the points 2

$$A\left(\frac{a\cos\theta}{1-\sin\theta},\frac{b\cos\theta}{1-\sin\theta}\right)$$
 and $B\left(\frac{a\cos\theta}{1+\sin\theta},\frac{-b\cos\theta}{1+\sin\theta}\right)$.

(iii) Prove that the area of the triangle *OAB* is *ab*.

Question 4 continues on page 7

2

4

1

Question 4 (continued)

(c) A hall has n doors. Suppose that n people each choose any door at random to enter the hall.

(i)	In how many ways can this be done?	1
-----	------------------------------------	---

(ii) What is the probability that at least one door will not be chosen by any **2** of the people?

End of Question 4

2

2

Question 5 (15 marks) Use a SEPARATE writing booklet.

(a) Let α , β and γ be the three roots of $x^3 + px + q = 0$, and define s_n by

$$s_n = \alpha^n + \beta^n + \gamma^n$$
 for $n = 1, 2, 3, \dots$

- (i) Explain why $s_1 = 0$, and show that $s_2 = -2p$ and $s_3 = -3q$. 3
- (ii) Prove that for n > 3

$$s_n = -ps_{n-2} - qs_{n-3}.$$

(iii) Deduce that

$$\frac{\alpha^5 + \beta^5 + \gamma^5}{5} = \left(\frac{\alpha^2 + \beta^2 + \gamma^2}{2}\right) \left(\frac{\alpha^3 + \beta^3 + \gamma^3}{3}\right)$$

Question 5 continues on page 9

Question 5 (continued)

(b) A particle of mass *m* is thrown from the top, *O*, of a very tall building with an initial velocity *u* at an angle α to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both the horizontal and vertical directions. The equations of motion in the horizontal and vertical directively by

$$\ddot{x} = -k\dot{x}$$
 and $\ddot{y} = -k\dot{y} - g$,

where k is a constant and the acceleration due to gravity is g. (You are NOT required to show these.)

(i) Derive the result x = ue^{-kt} cos α from the relevant equation of motion.
(ii) Verify that y = 1/k ((ku sin α + g)e^{-kt} - g) satisfies the appropriate equation of motion and initial condition.
(iii) Find the value of t when the particle reaches its maximum height.
(iv) What is the limiting value of the horizontal displacement of the particle?

End of Question 5

BLANK PAGE

Question 6 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Prove the identity
$$\cos(a+b)x + \cos(a-b)x = 2\cos ax \cos bx$$
. 1

(ii) Hence find
$$\int \cos 3x \cos 2x \, dx$$
. 2

(b) A sequence s_n is defined by $s_1 = 1$, $s_2 = 2$ and, for n > 2, $s_n = s_{n-1} + (n-1)s_{n-2}$.

- (i) Find s_3 and s_4 . 1
- (ii) Prove that $\sqrt{x} + x \ge \sqrt{x(x+1)}$ for all real numbers $x \ge 0$. 2
- (iii) Prove by induction that $s_n \ge \sqrt{n!}$ for all integers $n \ge 1$. 3
- (c) (i) Let x and y be real numbers such that $x \ge 0$ and $y \ge 0$. Prove that $\frac{x+y}{2} \ge \sqrt{xy}$.
 - (ii) Suppose that a, b, c are real numbers. 2 Prove that $a^4 + b^4 + c^4 \ge a^2b^2 + a^2c^2 + b^2c^2$. (iii) Show that $a^2b^2 + a^2c^2 + b^2c^2 \ge a^2bc + b^2ac + c^2ab$. 2
 - (iv) Deduce that if a + b + c = d, then $a^4 + b^4 + c^4 \ge abcd$. 1

Question 7 (15 marks) Use a SEPARATE writing booklet.

(a) The region bounded by $0 \le x \le \sqrt{3}$, $0 \le y \le x(3-x^2)$ is rotated about the *y*-axis to form a solid. **3**

Use the method of cylindrical shells to find the volume of the solid.

Two circles \mathscr{C}_1 and \mathscr{C}_2 intersect at the points A and B. Let P be a point on AB produced and let PS and PT be tangents to \mathscr{C}_1 and \mathscr{C}_2 respectively, as shown in the diagram.

Copy or trace the diagram into your writing booklet.

(i)	Prove that $\triangle ASP \parallel \mid \triangle SBP$.	2
(ii)	Hence, prove that $SP^2 = AP \times BP$ and deduce that $PT = PS$.	2
(iii)	The perpendicular to SP drawn from S meets the bisector of $\angle SPT$ at D. Prove that DT passes through the centre of \mathscr{C}_2 .	3

Question 7 continues on page 13

Marks

2

Question 7 (continued)

(c) Suppose that α is a real number with $0 < \alpha < \pi$.

Let
$$P_n = \cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{4}\right)\cos\left(\frac{\alpha}{8}\right)...\cos\left(\frac{\alpha}{2^n}\right).$$

(i) Show that $P_n\sin\left(\frac{\alpha}{2^n}\right) = \frac{1}{2}P_{n-1}\sin\left(\frac{\alpha}{2^{n-1}}\right).$ 2

(ii) Deduce that
$$P_n = \frac{\sin \alpha}{2^n \sin\left(\frac{\alpha}{2^n}\right)}$$
. 1

(iii) Given that $\sin x < x$ for x > 0, show that

$$\frac{\sin\alpha}{\cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\alpha}{4}\right)\cos\left(\frac{\alpha}{8}\right)\dots\cos\left(\frac{\alpha}{2^n}\right)} < \alpha.$$

End of Question 7

2

2

Question 8 (15 marks) Use a SEPARATE writing booklet.

- (a) Suppose that $\omega^3 = 1, \omega \neq 1$, and k is a positive integer.
 - (i) Find the two possible values of $1 + \omega^k + \omega^{2k}$. 2
 - (ii) Use the binomial theorem to expand $(1 + \omega)^n$ and $(1 + \omega^2)^n$, where *n* is **1** a positive integer.
 - (iii) Let ℓ be the largest integer such that $3\ell \leq n$.

Deduce that

$$\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \ldots + \binom{n}{3\ell} = \frac{1}{3} \left(2^n + (1+\omega)^n + \left(1+\omega^2\right)^n \right).$$

(iv) If *n* is a multiple of 6, prove that

$$\binom{n}{0} + \binom{n}{3} + \binom{n}{6} + \dots + \binom{n}{n} = \frac{1}{3} (2^n + 2).$$

Question 8 continues on page 15

3

2

Question 8 (continued)

(b) Suppose that π could be written in the form $\frac{p}{q}$, where p and q are positive integers. Define the family of integrals I_n for n = 0, 1, 2, ... by

$$I_n = \frac{q^{2n}}{n!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^n \cos x \, dx \, .$$

You are given that $I_0 = 2$ and $I_1 = 4q^2$. (Do NOT prove this.)

(i) Use integration by parts twice to show that, for $n \ge 2$,

$$I_n = \frac{2q^{2n}}{(n-1)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{\pi^2}{4} - x^2\right)^{n-1} \cos x \, dx - \frac{4q^{2n}}{(n-2)!} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \left(\frac{\pi^2}{4} - x^2\right)^{n-2} \cos x \, dx.$$

(ii) By writing
$$x^2$$
 as $\frac{\pi^2}{4} - \left(\frac{\pi^2}{4} - x^2\right)$ where appropriate, deduce that $I_n = (4n-2)q^2 I_{n-1} - p^2 q^2 I_{n-2}$, for $n \ge 2$.

(iii) Explain briefly why
$$I_n$$
 is an integer for $n = 0, 1, 2, ...$ 1

(iv) Prove that

$$0 < I_n < \frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!}$$
 for $n = 0, 1, 2, ...$

(v) Given that $\frac{p}{q} \left(\frac{p}{2}\right)^{2n} \frac{1}{n!} < 1$, if *n* is sufficiently large, deduce that π is **1** irrational.

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x$$
, $x > 0$