

B O A R D O F S T U DIES

new south wales

2003

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

-Reading time - 5 minutes

- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

Total marks - 84
Attempt Questions 1-7
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Find the coordinates of the point P that divides the interval joining $(-3,4)$ and $(5,6)$ internally in the ratio $1: 3$.
(b) Solve $\frac{3}{x-2} \leq 1$.
(c) Evaluate $\lim _{x \rightarrow 0} \frac{3 x}{\sin 2 x}$.
(d) A curve has parametric equations $x=\frac{t}{2}, y=3 t^{2}$. Find the Cartesian equation for this curve.
(e) Use the substitution $u=x^{2}+1$ to evaluate

$$
\int_{0}^{2} \frac{x}{\left(x^{2}+1\right)^{3}} d x
$$

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Sketch the graph of $y=3 \cos ^{-1} 2 x$. Your graph must clearly indicate the domain 2 and the range.
(b) Find $\frac{d}{d x}\left(x \tan ^{-1} x\right)$.
(c) Evaluate $\int_{0}^{1} \frac{1}{\sqrt{2-x^{2}}} d x$.
(d) Find the coefficient of x^{4} in the expansion of $\left(2+x^{2}\right)^{5}$.
(e) (i) Express $\cos x-\sin x$ in the form $R \cos (x+\alpha)$, where α is in radians.
(ii) Hence, or otherwise, sketch the graph of $y=\cos x-\sin x$ for $0 \leq x \leq 2 \pi$. 2

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) How many nine-letter arrangements can be made using the letters of the word ISOSCELES?
(b) A particle moves in a straight line and its position at time t is given by

$$
x=4 \sin \left(2 t+\frac{\pi}{3}\right) .
$$

(i) Show that the particle is undergoing simple harmonic motion.
(ii) Find the amplitude of the motion.
(iii) When does the particle first reach maximum speed after time $t=0$?
(c) (i) Explain why the probability of getting a sum of 5 when one pair of fair dice is tossed is $\frac{1}{9}$.
(ii) Find the probability of getting a sum of 5 at least twice when a pair of dice is tossed 7 times.
(d) Use mathematical induction to prove that

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

for all positive integers n.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) A committee of 6 is to be chosen from 14 candidates. In how many different ways can this be done?
(b) The function $f(x)=\sin x-\frac{2 x}{3}$ has a zero near $x=1.5$. Taking $x=1.5$ as a first approximation, use one application of Newton's method to find a second approximation to the zero. Give your answer correct to three decimal places.
(c) It is known that two of the roots of the equation $2 x^{3}+x^{2}-k x+6=0$ are reciprocals of each other. Find the value of k.
(d)

In the diagram, $C Q$ and $B P$ are altitudes of the triangle $A B C$. The lines $C Q$ and $B P$ intersect at T, and $A T$ is produced to meet $C B$ at R.

Copy or trace the diagram into your writing booklet.
(i) Explain why $C P Q B$ is a cyclic quadrilateral.
(ii) Explain why $P A Q T$ is a cyclic quadrilateral.
(iii) Prove that $\angle T A Q=\angle Q C B$.
(iv) Prove that $A R \perp C B$.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Find $\int \cos ^{2} 3 x d x$.

2
(b) The graph of $f(x)=x^{2}-4 x+5$ is shown in the diagram.

(i) Explain why $f(x)$ does not have an inverse function.
(ii) Sketch the graph of the inverse function, $g^{-1}(x)$, of $g(x)$, where $g(x)=x^{2}-4 x+5, x \leq 2$.
(iii) State the domain of $g^{-1}(x)$.
(iv) Find an expression for $y=g^{-1}(x)$ in terms of x.
(c) Dr Kool wishes to find the temperature of a very hot substance using his thermometer, which only measures up to $100^{\circ} \mathrm{C}$. Dr Kool takes a sample of the substance and places it in a room with a surrounding air temperature of $20^{\circ} \mathrm{C}$, and allows it to cool.

After 6 minutes the temperature of the substance is $80^{\circ} \mathrm{C}$, and after a further 2 minutes it is $50^{\circ} \mathrm{C}$. If $T(t)$ is the temperature of the substance after t minutes, then Newton's law of cooling states that T satisfies the equation

$$
\frac{d T}{d t}=k(T-A)
$$

where k is a constant and A is the surrounding air temperature.
(i) Verify that $T=A+B e^{k t}$ satisfies the above equation.
(ii) Show that $k=-\frac{\log _{e} 2}{2}$, and find the value of B.
(iii) Hence find the initial temperature of the substance.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a) The acceleration of a particle P is given by the equation

$$
\frac{d^{2} x}{d t^{2}}=8 x\left(x^{2}+4\right)
$$

where x metres is the displacement of P from a fixed point O after t seconds.
Initially the particle is at O and has velocity $8 \mathrm{~ms}^{-1}$ in the positive direction.
(i) Show that the speed at any position x is given by $2\left(x^{2}+4\right) \mathrm{ms}^{-1}$.
(ii) Hence find the time taken for the particle to travel 2 metres from O.
(b)

In the diagram, $A B C D$ is a unit square. Points E and F are chosen on $A D$ and $D C$ respectively, such that $\angle A E G=\angle F H C$, where G and H are the points at which $B E$ and $B F$ respectively cut the diagonal $A C$.

Let $A E=p, F C=q, \angle A E G=\alpha$ and $\angle A G E=\beta$.
(i) Express α in terms of p, and β in terms of q.
(ii) Prove that $p+q=1-p q$.
(iii) Show that the area of the quadrilateral $E B F D$ is given by

$$
1-\frac{p}{2}+\frac{p-1}{2(1+p)} .
$$

(iv) What is the maximum value of the area of $E B F D$?

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) David is in a life raft and Anna is in a cabin cruiser searching for him. They are in contact by mobile telephone. David tells Anna that he can see Mt Hope. From David's position the mountain has a bearing of 109°, and the angle of elevation to the top of the mountain is 16°.

Anna can also see Mt Hope. From her position it has a bearing of 139°, and the top of the mountain has an angle of elevation of 23°.

The top of Mt Hope is 1500 m above sea level.

Find the distance and bearing of the life raft from Anna's position.

Question 7 continues on page 9

Question 7 (continued)
(b) A particle is projected from the origin with velocity $v \mathrm{~ms}^{-1}$ at an angle α to the horizontal. The position of the particle at time t seconds is given by the parametric equations

$$
\begin{aligned}
& x=v t \cos \alpha \\
& y=v t \sin \alpha-\frac{1}{2} g t^{2},
\end{aligned}
$$

where $g \mathrm{~ms}^{-2}$ is the acceleration due to gravity. (You are NOT required to derive these.)
(i) Show that the maximum height reached, h metres, is given by

$$
h=\frac{v^{2} \sin ^{2} \alpha}{2 g}
$$

(ii) Show that it returns to the initial height at $x=\frac{v^{2}}{g} \sin 2 \alpha$.
(iii) Chris and Sandy are tossing a ball to each other in a long hallway. The ceiling height is H metres and the ball is thrown and caught at shoulder height, which is S metres for both Chris and Sandy.

The ball is thrown with a velocity $v \mathrm{~m} \mathrm{~s}^{-1}$. Show that the maximum separation, d metres, that Chris and Sandy can have and still catch the ball is given by

$$
\begin{array}{ll}
d=4 \times \sqrt{(H-S)\left(\frac{v^{2}}{2 g}\right)-(H-S)^{2}}, & \text { if } v^{2} \geq 4 g(H-S), \\
d=\frac{v^{2}}{g}, & \text { if } v^{2} \leq 4 g(H-S) .
\end{array}
$$

End of paper

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

