

BOARD OF STUDIES New south wales

2002

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1–8
- All questions are of equal value

Total marks – 120 Attempt Questions 1–8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

MarksQuestion 1 (15 marks) Use a SEPARATE writing booklet.(a) By using the substitution
$$u = \sec x$$
, or otherwise, find $\int \sec^3 x \tan x \, dx$.(b) By completing the square, find $\int \frac{dx}{x^2 + 2x + 2}$.2

(c) Find
$$\int \frac{x \, dx}{(x+3)(x-1)}$$
. 3

$$\int_0^{\frac{\pi}{2}} e^x \cos x \, dx \, .$$

(e) Use the substitution
$$t = \tan \frac{\theta}{2}$$
 to find 4

$$\int_0^{\frac{\pi}{2}} \frac{d\theta}{2+\cos\theta} \, .$$

3

2

Question 2 (15 marks) Use a SEPARATE writing booklet.

(a) Let
$$z = 1 + 2i$$
 and $w = 1 + i$. Find, in the form $x + iy$,

(i)
$$z\overline{w}$$
 1

(ii)
$$\frac{1}{w}$$
.

(b) On an Argand diagram, shade in the region where the inequalities

$$0 \le \operatorname{Re} z \le 2$$
 and $|z-1+i| \le 2$

both hold.

(c) It is given that 2+i is a root of

$$P(z) = z^3 + rz^2 + sz + 20,$$

where *r* and *s* are real numbers.

- (i) State why 2-i is also a root of P(z). 1
- (ii) Factorise P(z) over the real numbers.
- (d) Prove by induction that, for all integers $n \ge 1$, 3

$$(\cos\theta - i\sin\theta)^n = \cos(n\theta) - i\sin(n\theta).$$

(e) Let
$$z = 2(\cos \theta + i \sin \theta)$$
.

(i) Find $\overline{1-z}$.

(ii) Show that the real part of
$$\frac{1}{1-z}$$
 is $\frac{1-2\cos\theta}{5-4\cos\theta}$. 2

(iii) Express the imaginary part of
$$\frac{1}{1-z}$$
 in terms of θ . 1

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a)

The diagram shows the graph of y = f(x).

Draw separate one-third page sketches of the graphs of the following:

(i)
$$y = \frac{1}{f(x)}$$
 2

(ii)
$$y^2 = f(x)$$
 2

(iii)
$$y = \left| f(|x|) \right|$$
 2

(iv)
$$y = \ln(f(x))$$
. 2

Question 3 continues on page 5

(b)

The distinct points $P\left(cp, \frac{c}{p}\right)$ and $Q\left(cq, \frac{c}{q}\right)$ are on the same branch of the hyperbola \mathcal{H} with equation $xy = c^2$. The tangents to \mathcal{H} at P and Q meet at the point T.

$$x + p^2 y = 2cp.$$

(ii) Show that T is the point
$$\left(\frac{2cpq}{p+q}, \frac{2c}{p+q}\right)$$
. 2

(iii) Suppose P and Q move so that the tangent at P intersects the x axis 3 at (cq, 0).

Show that the locus of T is a hyperbola, and state its eccentricity.

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.

(a)

The shaded region bounded by $y=3-x^2$, $y=x+x^2$ and x=-1 is rotated about the line x=-1. The point *P* is the intersection of $y=3-x^2$ and $y=x+x^2$ in the first quadrant.

- (i) Find the *x* coordinate of *P*. 1 Use the method of cylindrical shells to express the volume of the 3 (ii) resulting solid of revolution as an integral. 2
- Evaluate the integral in part (ii). (iii)

Question 4 continues on page 7

Question 4 (continued)

(b)

(c)

In the diagram, *A*, *B*, *C* and *D* are concyclic, and the points *R*, *S*, *T* are the feet of the perpendiculars from *D* to *BA* produced, *AC* and *BC* respectively.

(i)	Show that $\angle DSR = \angle DAR$.	2
(ii)	Show that $\angle DST = \pi - \angle DCT$.	2
(iii)	Deduce that the points R , S and T are collinear.	2
From a pack of nine cards numbered $1, 2, 3,, 9$, three cards are drawn at random and laid on a table from left to right.		

(i)	What is the probability that the number formed exceeds 400?	1

(ii) What is the probability that the digits are drawn in descending order? 2

End of Question 4

2

Question 5 (15 marks) Use a SEPARATE writing booklet.

- (a) The equation $4x^3 27x + k = 0$ has a double root. Find the possible values of k. 2
- (b) Let α , β , and γ be the roots of the equation $x^3 5x^2 + 5 = 0$.
 - (i) Find a polynomial equation with integer coefficients whose roots are $\alpha 1$, $\beta 1$, and $\gamma 1$.
 - (ii) Find a polynomial equation with integer coefficients whose roots are α^2 , β^2 , and γ^2 .

(iii) Find the value of
$$\alpha^3 + \beta^3 + \gamma^3$$
.

The ellipse \mathcal{E} has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and focus *S* and directrix \mathcal{D} as shown in the diagram. The point $T(x_0, y_0)$ lies outside the ellipse and is not on the *x* axis. The chord of contact *PQ* from *T* intersects \mathcal{D} at *R*, as shown in the diagram.

(i) Show that the equation of the tangent to the ellipse at the point $P(x_1, y_1)$ is 2

$$\frac{x_1 x}{a^2} + \frac{y_1 y}{b^2} = 1$$

(ii) Show that the equation of the chord of contact from T is

$$\frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$

(iii) Show that TS is perpendicular to SR.

3

2

Question 6 (15 marks) Use a SEPARATE writing booklet.

(a) A particle of mass *m* is suspended by a string of length *l* from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity ω . The angle of the cone at its vertex is 2α , where $\alpha > \frac{\pi}{4}$, and the string makes an angle of α with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string *T*, the normal reaction to the cone *N* and the gravitational force *mg*.

- (i) Show, with the aid of a diagram, that the vertical component of N **1** is $N \sin \alpha$.
- (ii) Show that $T + N = \frac{mg}{\sin \alpha}$, and find an expression for T N in terms of **3** *m*, *l* and ω .
- (iii) The angular velocity is increased until N=0, that is, when the particle is about to lose contact with the cone. Find an expression for this value of ω in terms of α , l and g.

Question 6 continues on page 10

– 10 –

Question 6 (continued)

(b) For n = 0, 1, 2, ... let

 $I_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \, d\theta \, .$

(i) Show that
$$I_1 = \frac{1}{2} \ln 2$$
. **1**

(ii) Show that, for
$$n \ge 2$$
,

(iii) For
$$n \ge 2$$
, explain why $I_n < I_{n-2}$, and deduce that

$$\frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)}.$$

(iv) By using the recurrence relation of part (ii), find
$$I_5$$
 and deduce that

 $I_n + I_{n-2} = \frac{1}{n-1}.$

$$\frac{2}{3} < \ln 2 < \frac{3}{4} \; .$$

End of Question 6

3

2

3

Question 7 (15 marks) Use a SEPARATE writing booklet.

The diagram represents a vertical cylindrical water cooler of constant cross-sectional area A. Water drains through a hole at the bottom of the cooler. From physical principles, it is known that the volume V of water decreases at a rate given by

$$\frac{dV}{dt} = -k\sqrt{y} \; ,$$

where *k* is a positive constant and *y* is the depth of water.

Initially the cooler is full and it takes *T* seconds to drain. Thus $y = y_0$ when t = 0, and y = 0 when t = T.

(i) Show that
$$\frac{dy}{dt} = -\frac{k}{A}\sqrt{y}$$
. 1

(ii) By considering the equation for
$$\frac{dt}{dy}$$
, or otherwise, show that 4

$$y = y_0 \left(1 - \frac{t}{T}\right)^2$$
 for $0 \le t \le T$.

(iii) Suppose it takes 10 seconds for half the water to drain out. How long does it take to empty the full cooler?

Question 7 continues on page 12

2

2

Question 7 (continued)

(b) Suppose $0 < \alpha$, $\beta < \frac{\pi}{2}$ and define complex numbers z_n by $z_n = \cos(\alpha + n\beta) + i \sin(\alpha + n\beta)$

for n = 0, 1, 2, 3, 4. The points P_0, P_1, P_2 and P_3 are the points in the Argand diagram that correspond to the complex numbers $z_0, z_0 + z_1, z_0 + z_1 + z_2$ and $z_0 + z_1 + z_2 + z_3$ respectively. The angles θ_0, θ_1 and θ_2 are the external angles at P_0, P_1 and P_2 as shown in the diagram below.

(i) Using vector addition, explain why

$$\theta_0 = \theta_1 = \theta_2 = \beta_1$$

- (ii) Show that $\angle P_0 OP_1 = \angle P_0 P_2 P_1$, and explain why $OP_0 P_1 P_2$ is a cyclic **2** quadrilateral.
- (iii) Show that $P_0P_1P_2P_3$ is a cyclic quadrilateral, and explain why the points **2** O, P_0, P_1, P_2 and P_3 are concyclic. **2**
- (iv) Suppose that $z_0 + z_1 + z_2 + z_3 + z_4 = 0$. Show that

$$\beta = \frac{2\pi}{5}$$

End of Question 7

Question 8 (15 marks) Use a SEPARATE writing booklet.

- (a) Let *m* be a positive integer.
 - (i) By using De Moivre's theorem, show that

$$\sin(2m+1)\theta = {\binom{2m+1}{1}}\cos^{2m}\theta\sin\theta - {\binom{2m+1}{3}}\cos^{2m-2}\theta\sin^{3}\theta + \dots + (-1)^{m}\sin^{2m+1}\theta.$$

(ii) Deduce that the polynomial

$$p(x) \equiv \binom{2m+1}{1} x^m - \binom{2m+1}{3} x^{m-1} + \dots + (-1)^m$$

has *m* distinct roots

$$\alpha_k = \cot^2\left(\frac{k\pi}{2m+1}\right)$$
 where $k = 1, 2, ..., m$.

(iii) Prove that $\cot^{2}\left(\frac{\pi}{2m+1}\right) + \cot^{2}\left(\frac{2\pi}{2m+1}\right) + \dots + \cot^{2}\left(\frac{m\pi}{2m+1}\right) = \frac{m(2m-1)}{3}.$

(iv) You are given that
$$\cot \theta < \frac{1}{\theta}$$
 for $0 < \theta < \frac{\pi}{2}$. 2

Deduce that

$$\frac{\pi^2}{6} < \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{m^2}\right) \frac{(2m+1)^2}{2m(2m-1)}$$

Question 8 continues on page 14

2

2

3

Question 8 (continued)

In the diagram, AB and CD are line segments of length 2a in horizontal planes at a distance 2a apart. The midpoint E of CD is vertically above the midpoint F of AB, and AB lies in the South–North direction, while CD lies in the West–East direction.

The rectangle *KLMN* is the horizontal cross-section of the tetrahedron *ABCD* at distance *x* from the midpoint *P* of *EF* (so PE = PF = a).

- (i) By considering the triangle *ABE*, deduce that KL = a x, and find the area of the rectangle *KLMN*.
- (ii) Find the volume of the tetrahedron *ABCD*.

2

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE :
$$\ln x = \log_e x$$
, $x > 0$