

B O A R D O F S T U DIES
new south wales

2002
HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

-Reading time - 5 minutes

- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Total marks - $\mathbf{1 2 0}$
Attempt Questions 1-8
All questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) By using the substitution $u=\sec x$, or otherwise, find

2

$$
\int \sec ^{3} x \tan x d x
$$

(b) By completing the square, find $\int \frac{d x}{x^{2}+2 x+2}$.
(c) Find $\int \frac{x d x}{(x+3)(x-1)}$.
(d) By using two applications of integration by parts, evaluate

$$
\int_{0}^{\frac{\pi}{2}} e^{x} \cos x d x
$$

(e) Use the substitution $t=\tan \frac{\theta}{2}$ to find

$$
\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{2+\cos \theta}
$$

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=1+2 i$ and $w=1+i$. Find, in the form $x+i y$,
(i) $z \bar{w}$

1
(ii) $\frac{1}{w}$.
(b) On an Argand diagram, shade in the region where the inequalities

$$
0 \leq \operatorname{Re} z \leq 2 \text { and }|z-1+i| \leq 2
$$

both hold.
(c) It is given that $2+i$ is a root of

$$
P(z)=z^{3}+r z^{2}+s z+20,
$$

where r and s are real numbers.
(i) State why $2-i$ is also a root of $P(z)$.
(ii) Factorise $P(z)$ over the real numbers.
(d) Prove by induction that, for all integers $n \geq 1$,

$$
(\cos \theta-i \sin \theta)^{n}=\cos (n \theta)-i \sin (n \theta)
$$

(e) Let $z=2(\cos \theta+i \sin \theta)$.
(i) Find $\overline{1-z}$.
(ii) Show that the real part of $\frac{1}{1-z}$ is $\frac{1-2 \cos \theta}{5-4 \cos \theta}$.
(iii) Express the imaginary part of $\frac{1}{1-z}$ in terms of θ.

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows the graph of $y=f(x)$.
Draw separate one-third page sketches of the graphs of the following:
(i) $y=\frac{1}{f(x)}$
(ii) $y^{2}=f(x)$
(iii) $\quad y=|f(|x|)|$
(iv) $\quad y=\ln (f(x))$.

Question 3 (continued)
(b)

The distinct points $P\left(c p, \frac{c}{p}\right)$ and $Q\left(c q, \frac{c}{q}\right)$ are on the same branch of the hyperbola \mathscr{H} with equation $x y=c^{2}$. The tangents to \mathcal{H} at P and Q meet at the point T.
(i) Show that the equation of the tangent at P is

$$
x+p^{2} y=2 c p
$$

(ii) Show that T is the point $\left(\frac{2 c p q}{p+q}, \frac{2 c}{p+q}\right)$.
(iii) Suppose P and Q move so that the tangent at P intersects the x axis at $(c q, 0)$.

Show that the locus of T is a hyperbola, and state its eccentricity.

End of Question 3

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a)

The shaded region bounded by $y=3-x^{2}, y=x+x^{2}$ and $x=-1$ is rotated about the line $x=-1$. The point P is the intersection of $y=3-x^{2}$ and $y=x+x^{2}$ in the first quadrant.
(i) Find the x coordinate of P.
(ii) Use the method of cylindrical shells to express the volume of the resulting solid of revolution as an integral.
(iii) Evaluate the integral in part (ii).

Question 4 (continued)
(b)

In the diagram, A, B, C and D are concyclic, and the points R, S, T are the feet of the perpendiculars from D to $B A$ produced, $A C$ and $B C$ respectively.
(i) Show that $\angle D S R=\angle D A R$.
(ii) Show that $\angle D S T=\pi-\angle D C T$.
(iii) Deduce that the points R, S and T are collinear.
(c) From a pack of nine cards numbered $1,2,3, \ldots, 9$, three cards are drawn at random and laid on a table from left to right.
(i) What is the probability that the number formed exceeds 400 ?
(ii) What is the probability that the digits are drawn in descending order?

End of Question 4

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a) The equation $4 x^{3}-27 x+k=0$ has a double root. Find the possible values of k.
(b) Let α, β, and γ be the roots of the equation $x^{3}-5 x^{2}+5=0$.
(i) Find a polynomial equation with integer coefficients whose roots are $\alpha-1, \beta-1$, and $\gamma-1$.
(ii) Find a polynomial equation with integer coefficients whose roots are α^{2}, β^{2}, and γ^{2}.
(iii) Find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
(c)

The ellipse \mathcal{E} has equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and focus S and directrix \mathcal{D} as shown in the diagram. The point $T\left(x_{0}, y_{0}\right)$ lies outside the ellipse and is not on the x axis. The chord of contact $P Q$ from T intersects \mathcal{D} at R, as shown in the diagram.
(i) Show that the equation of the tangent to the ellipse at the point $P\left(x_{1}, y_{1}\right)$ is

$$
\frac{x_{1} x}{a^{2}}+\frac{y_{1} y}{b^{2}}=1
$$

(ii) Show that the equation of the chord of contact from T is

$$
\frac{x_{0} x}{a^{2}}+\frac{y_{0} y}{b^{2}}=1
$$

(iii) Show that $T S$ is perpendicular to $S R$.

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a) A particle of mass m is suspended by a string of length l from a point directly above the vertex of a smooth cone, which has a vertical axis. The particle remains in contact with the cone and rotates as a conical pendulum with angular velocity ω. The angle of the cone at its vertex is 2α, where $\alpha>\frac{\pi}{4}$, and the string makes an angle of α with the horizontal as shown in the diagram. The forces acting on the particle are the tension in the string T, the normal reaction to the cone N and the gravitational force $m g$.

(i) Show, with the aid of a diagram, that the vertical component of N is $N \sin \alpha$.
(ii) Show that $T+N=\frac{m g}{\sin \alpha}$, and find an expression for $T-N$ in terms of m, l and ω.
(iii) The angular velocity is increased until $N=0$, that is, when the particle is about to lose contact with the cone. Find an expression for this value of ω in terms of α, l and g.

Question 6 continues on page 10

Question 6 (continued)
(b) For $n=0,1,2, \ldots$ let

$$
I_{n}=\int_{0}^{\frac{\pi}{4}} \tan ^{n} \theta d \theta
$$

(i) Show that $I_{1}=\frac{1}{2} \ln 2$.
(ii) Show that, for $n \geq 2$,

$$
I_{n}+I_{n-2}=\frac{1}{n-1}
$$

(iii) For $n \geq 2$, explain why $I_{n}<I_{n-2}$, and deduce that

$$
\frac{1}{2(n+1)}<I_{n}<\frac{1}{2(n-1)}
$$

(iv) By using the recurrence relation of part (ii), find I_{5} and deduce that

$$
\frac{2}{3}<\ln 2<\frac{3}{4}
$$

End of Question 6

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a)

The diagram represents a vertical cylindrical water cooler of constant cross-sectional area A. Water drains through a hole at the bottom of the cooler. From physical principles, it is known that the volume V of water decreases at a rate given by

$$
\frac{d V}{d t}=-k \sqrt{y}
$$

where k is a positive constant and y is the depth of water.
Initially the cooler is full and it takes T seconds to drain. Thus $y=y_{0}$ when $t=0$, and $y=0$ when $t=T$.
(i) Show that $\frac{d y}{d t}=-\frac{k}{A} \sqrt{y}$.
(ii) By considering the equation for $\frac{d t}{d y}$, or otherwise, show that

$$
y=y_{0}\left(1-\frac{t}{T}\right)^{2} \text { for } 0 \leq t \leq T
$$

(iii) Suppose it takes 10 seconds for half the water to drain out. How long does it take to empty the full cooler?

Question 7 continues on page 12

Question 7 (continued)
(b) Suppose $0<\alpha, \beta<\frac{\pi}{2}$ and define complex numbers z_{n} by

$$
z_{n}=\cos (\alpha+n \beta)+i \sin (\alpha+n \beta)
$$

for $n=0,1,2,3,4$. The points P_{0}, P_{1}, P_{2} and P_{3} are the points in the Argand diagram that correspond to the complex numbers $z_{0}, z_{0}+z_{1}, z_{0}+z_{1}+z_{2}$ and $z_{0}+z_{1}+z_{2}+z_{3}$ respectively. The angles θ_{0}, θ_{1} and θ_{2} are the external angles at P_{0}, P_{1} and P_{2} as shown in the diagram below.

(i) Using vector addition, explain why

$$
\theta_{0}=\theta_{1}=\theta_{2}=\beta
$$

(ii) Show that $\angle P_{0} O P_{1}=\angle P_{0} P_{2} P_{1}$, and explain why $O P_{0} P_{1} P_{2}$ is a cyclic quadrilateral.
(iii) Show that $P_{0} P_{1} P_{2} P_{3}$ is a cyclic quadrilateral, and explain why the points O, P_{0}, P_{1}, P_{2} and P_{3} are concyclic.
(iv) Suppose that $z_{0}+z_{1}+z_{2}+z_{3}+z_{4}=0$. Show that

$$
\beta=\frac{2 \pi}{5}
$$

End of Question 7

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) Let m be a positive integer.
(i) By using De Moivre's theorem, show that

$$
\begin{gathered}
\sin (2 m+1) \theta=\binom{2 m+1}{1} \cos ^{2 m} \theta \sin \theta-\binom{2 m+1}{3} \cos ^{2 m-2} \theta \sin ^{3} \theta+ \\
\ldots+(-1)^{m} \sin ^{2 m+1} \theta
\end{gathered}
$$

(ii) Deduce that the polynomial

$$
p(x) \equiv\binom{2 m+1}{1} x^{m}-\binom{2 m+1}{3} x^{m-1}+\ldots+(-1)^{m}
$$

has m distinct roots

$$
\alpha_{k}=\cot ^{2}\left(\frac{k \pi}{2 m+1}\right) \quad \text { where } k=1,2, \ldots, m
$$

(iii) Prove that

$$
\cot ^{2}\left(\frac{\pi}{2 m+1}\right)+\cot ^{2}\left(\frac{2 \pi}{2 m+1}\right)+\ldots+\cot ^{2}\left(\frac{m \pi}{2 m+1}\right)=\frac{m(2 m-1)}{3}
$$

(iv) You are given that $\cot \theta<\frac{1}{\theta}$ for $0<\theta<\frac{\pi}{2}$.

Deduce that

$$
\frac{\pi^{2}}{6}<\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots+\frac{1}{m^{2}}\right) \frac{(2 m+1)^{2}}{2 m(2 m-1)}
$$

Question 8 continues on page 14

Question 8 (continued)
(b)

In the diagram, $A B$ and $C D$ are line segments of length $2 a$ in horizontal planes at a distance $2 a$ apart. The midpoint E of $C D$ is vertically above the midpoint F of $A B$, and $A B$ lies in the South-North direction, while $C D$ lies in the West-East direction.

The rectangle $K L M N$ is the horizontal cross-section of the tetrahedron $A B C D$ at distance x from the midpoint P of $E F$ (so $P E=P F=a$).
(i) By considering the triangle $A B E$, deduce that $K L=a-x$, and find the area of the rectangle $K L M N$.
(ii) Find the volume of the tetrahedron $A B C D$.

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

