

B O A R D OF STIDIES
new south wales

2002
HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value

BLANK PAGE

Total marks - 84
Attempt Questions 1-7
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.
(a) Evaluate $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$.

1
(b) Find $\frac{d}{d x}\left(3 x^{2} \ln x\right)$ for $x>0$.
(c) Use the table of standard integrals to evaluate $\int_{0}^{\frac{\pi}{6}} \sec 2 x \tan 2 x d x$.
(d) State the domain and range of the function $f(x)=3 \sin ^{-1}\left(\frac{x}{2}\right)$.
(e) The variable point $\left(3 t, 2 t^{2}\right)$ lies on a parabola. Find the Cartesian equation for this parabola.
(f) Use the substitution $u=1-x^{2}$ to evaluate $\int_{2}^{3} \frac{2 x}{\left(1-x^{2}\right)^{2}} d x$.

Question 2 (12 marks) Use a SEPARATE writing booklet.
(a) Solve $2^{x}=3$.

Express your answer correct to two decimal places.
(b) Find the general solution to $2 \cos x=\sqrt{3}$.

Express your answer in terms of π.
(c) Suppose $x^{3}-2 x^{2}+a \equiv(x+2) Q(x)+3$ where $Q(x)$ is a polynomial.

Find the value of a.
(d) Evaluate $2 \int_{0}^{\frac{\pi}{4}} \sin ^{2} 4 x d x$.
(e)

In the diagram the points A, B and C lie on the circle and $C B$ produced meets the tangent from A at the point T. The bisector of the angle $A T C$ intersects $A B$ and $A C$ at X and Y respectively. Let $\angle T A B=\beta$.

Copy or trace the diagram into your writing booklet.
(i) Explain why $\angle A C B=\beta$.
(ii) Hence prove that triangle $A X Y$ is isosceles.

Question 3 (12 marks) Use a SEPARATE writing booklet.
(a) Seven people are to be seated at a round table.
(i) How many seating arrangements are possible?
(ii) Two people, Kevin and Jill, refuse to sit next to each other. How many seating arrangements are then possible?
(b) (i) Show that $f(x)=e^{x}-3 x^{2}$ has a root between $x=3.7$ and $x=3.8$.
(ii) Starting with $x=3.8$, use one application of Newton's method to find a better approximation for this root. Write your answer correct to three significant figures.
(c) A household iron is cooling in a room of constant temperature $22^{\circ} \mathrm{C}$. At time t minutes its temperature T decreases according to the equation

$$
\frac{d T}{d t}=-k(T-22) \text { where } k \text { is a positive constant. }
$$

The initial temperature of the iron is $80^{\circ} \mathrm{C}$ and it cools to $60^{\circ} \mathrm{C}$ after 10 minutes.
(i) Verify that $T=22+A e^{-k t}$ is a solution of this equation, where A is a constant.
(ii) Find the values of A and k.
(iii) How long will it take for the temperature of the iron to cool to $30^{\circ} \mathrm{C}$? 2 Give your answer to the nearest minute.

Question 4 (12 marks) Use a SEPARATE writing booklet.
(a) Lyndal hits the target on average 2 out of every 3 shots in archery competitions. During a competition she has 10 shots at the target.
(i) What is the probability that Lyndal hits the target exactly 9 times? Leave your answer in unsimplified form.
(ii) What is the probability that Lyndal hits the target fewer than 9 times? Leave your answer in unsimplified form.
(b) The polynomial $P(x)=x^{3}-2 x^{2}+k x+24$ has roots α, β, γ.
(i) Find the value of $\alpha+\beta+\gamma$.
(ii) Find the value of $\alpha \beta \gamma$.
(iii) It is known that two of the roots are equal in magnitude but opposite in sign.

Find the third root and hence find the value of k.
(c) A particle, whose displacement is x, moves in simple harmonic motion such that $\ddot{x}=-16 x$. At time $t=0, x=1$ and $\dot{x}=4$.
(i) Show that, for all positions of the particle,

$$
|\dot{x}|=4 \sqrt{2-x^{2}} .
$$

(ii) What is the particle's greatest displacement?
(iii) Find x as a function of t. You may assume the general form for x.

Question 5 (12 marks) Use a SEPARATE writing booklet.
(a) Use the principle of mathematical induction to show that

3

$$
2 \times 1!+5 \times 2!+10 \times 3!+\ldots+\left(n^{2}+1\right) n!=n(n+1)!
$$

for all positive integers n.
(b)

NOT TO
SCALE

The diagram shows a conical drinking cup of height 12 cm and radius 4 cm . The cup is being filled with water at the rate of $3 \mathrm{~cm}^{3}$ per second. The height of water at time t seconds is $h \mathrm{~cm}$ and the radius of the water's surface is $r \mathrm{~cm}$.
(i) Show that $r=\frac{1}{3} h$.
(ii) Find the rate at which the height is increasing when the height of water is 9 cm . (Volume of cone $=\frac{1}{3} \pi r^{2} h$.)
(c) Consider the function

$$
f(x)=2 \sin ^{-1} \sqrt{x}-\sin ^{-1}(2 x-1) \text { for } 0 \leq x \leq 1 .
$$

(i) Show that $f^{\prime}(x)=0$ for $0<x<1$.
(ii) Sketch the graph of $y=f(x)$.

Question 6 (12 marks) Use a SEPARATE writing booklet.
(a)

An angler casts a fishing line so that the sinker is projected with a speed $V \mathrm{~m} \mathrm{~s}^{-1}$ from a point 5 metres above a flat sea. The angle of projection to the horizontal is θ, as shown.

Assume that the equations of motion of the sinker are

$$
\ddot{x}=0 \quad \text { and } \quad \ddot{y}=-10,
$$

referred to the coordinate axes shown.
(i) Let (x, y) be the position of the sinker at time t seconds after the cast, and before the sinker hits the water.

It is known that $x=V t \cos \theta$.
Show that $\quad y=V t \sin \theta-5 t^{2}+5$.
(ii) Suppose the sinker hits the sea 60 metres away as shown in the diagram.

Find the value of V if $\theta=\tan ^{-1} \frac{3}{4}$.
(iii) For the cast described in part (ii), find the maximum height above sea level that the sinker achieved.

Question 6 (continued)
(b) Let n be a positive integer.
(i) By considering the graph of $y=\frac{1}{x}$ show that

$$
\frac{1}{n+1}<\int_{n}^{n+1} \frac{d x}{x}<\frac{1}{n}
$$

(ii) Hence deduce that

$$
\left(1+\frac{1}{n}\right)^{n}<e<\left(1+\frac{1}{n}\right)^{n+1} .
$$

End of Question 6

Please turn over

Question 7 (12 marks) Use a SEPARATE writing booklet.
(a) Let $g(x)=e^{x}+\frac{1}{e^{x}}$ for all real values of x and let $f(x)=e^{x}+\frac{1}{e^{x}}$ for $x \leq 0$.
(i) Sketch the graph $y=g(x)$ and explain why $g(x)$ does not have an inverse function.
(ii) On a separate diagram, sketch the graph of the inverse function $y=f^{-1}(x)$.
(iii) Find an expression for $y=f^{-1}(x)$ in terms of x.
(b) The coefficient of x^{k} in $(1+x)^{n}$, where n is a positive integer, is denoted by $c_{k}\left(\right.$ so $\left.c_{k}={ }^{n} C_{k}\right)$.
(i) Show that

$$
c_{0}+2 c_{1}+3 c_{2}+\ldots+(n+1) c_{n}=(n+2) 2^{n-1}
$$

(ii) Find the sum

$$
\frac{c_{0}}{1.2}-\frac{c_{1}}{2.3}+\frac{c_{2}}{3.4}-\ldots+(-1)^{n} \frac{c_{n}}{(n+1)(n+2)}
$$

Write your answer as a simple expression in terms of n.

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

