

B O A R D OF STIDIES
new south wales

2001
 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

-Reading time - 5 minutes

- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1-8
- All questions are of equal value

Total marks - 120
Attempt Questions 1-8
All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.
(a) Find $\int_{0}^{\frac{\pi}{4}} \tan ^{3} x \sec ^{2} x d x$.
(b) By completing the square, find $\int \frac{d x}{\sqrt{x^{2}-4 x+1}}$.
(c) Use integration by parts to evaluate

$$
\int_{e}^{4} \frac{\ln x}{x^{2}} d x
$$

(d) Use the substitution $u=\sqrt{x-1}$ to evaluate

$$
\int_{2}^{3} \frac{1+x}{\sqrt{x-1}} d x
$$

(e) (i) Find real numbers a and b such that

$$
\frac{5 x^{2}-3 x+1}{\left(x^{2}+1\right)(x-2)} \equiv \frac{a x+1}{x^{2}+1}+\frac{b}{x-2} .
$$

(ii) Find $\int \frac{5 x^{2}-3 x+1}{\left(x^{2}+1\right)(x-2)} d x$.

Question 2 (15 marks) Use a SEPARATE writing booklet.
(a) Let $z=2+3 i$ and $w=1+i$.

Find $z w$ and $\frac{1}{w}$ in the form $x+i y$.
(b) (i) Express $1+\sqrt{3} i$ in modulus-argument form.
(ii) Hence evaluate $(1+\sqrt{3} i)^{10}$ in the form $x+i y$.
(c) Sketch the region in the complex plane where the inequalities

$$
|z+1-2 i| \leq 3 \text { and }-\frac{\pi}{3} \leq \arg z \leq \frac{\pi}{4}
$$

both hold.
(d) Find all solutions of the equation $z^{4}=-1$.

Give your answers in modulus-argument form.
(e)

In the diagram the vertices of a triangle $A B C$ are represented by the complex numbers z_{1}, z_{2} and z_{3}, respectively. The triangle is isosceles and right-angled at B.
(i) Explain why $\left(z_{1}-z_{2}\right)^{2}=-\left(z_{3}-z_{2}\right)^{2}$.
(ii) Suppose D is the point such that $A B C D$ is a square. Find the complex number, expressed in terms of z_{1}, z_{2} and z_{3}, that represents D.

Question 3 (15 marks) Use a SEPARATE writing booklet.
(a) Consider the hyperbola \mathcal{H} with equation $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$.
(i) Find the points of intersection of \mathcal{H} with the x axis, and the eccentricity and the foci of \mathcal{H}.
(ii) Write down the equations of the directrices and the asymptotes of \mathcal{H}.
(iii) Sketch \mathcal{H}.

1
(b) The numbers α, β and γ satisfy the equations

$$
\begin{gathered}
\alpha+\beta+\gamma=3 \\
\alpha^{2}+\beta^{2}+\gamma^{2}=1 \\
\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=2
\end{gathered}
$$

(i) Find the values of $\alpha \beta+\beta \gamma+\gamma \alpha$ and $\alpha \beta \gamma$.

Explain why α, β and γ are the roots of the cubic equation

$$
x^{3}-3 x^{2}+4 x-2=0
$$

(ii) Find the values of α, β and γ.
(c) The area under the curve $y=\sin x$ between $x=0$ and $x=\pi$ is rotated about the y axis.

Use the method of cylindrical shells to find the volume of the resulting solid of revolution.

Question 4 (15 marks) Use a SEPARATE writing booklet.
(a)

The diagram shows a sketch of $y=f^{\prime}(x)$, the derivative function of $y=f(x)$. The curve $y=f^{\prime}(x)$ has a horizontal asymptote $y=1$.
(i) Identify and classify the turning points of the curve $y=f(x)$.
(ii) Sketch the curve $y=f(x)$ given that $f(0)=0=f(2)$ and $y=f(x)$ is continuous. On your diagram, clearly identify and label any important features.
(b)

A cylindrical hole of radius r is bored through a sphere of radius R. The hole is perpendicular to the $x y$ plane and its axis passes through the origin O, which is the centre of the sphere. The resulting solid is denoted by $\&$. The cross-section of $\&$ shown in the diagram is distance h from the $x y$ plane.
(i) Show that the area of the cross-section shown above is $\pi\left(R^{2}-h^{2}-r^{2}\right)$.
(ii) Find the volume of $\&$, and express your answer in terms of b alone, where $2 b$ is the length of the hole.
(c) Use differentiation to show that $\tan ^{-1} \frac{x}{x+1}+\tan ^{-1} \frac{1}{2 x+1}$ is constant for $2 x+1>0$. What is the exact value of the constant?

Question 5 (15 marks) Use a SEPARATE writing booklet.
(a)

Consider the ellipse \mathcal{E}, with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and the points $P(a \cos \theta, b \sin \theta)$, $Q(a \cos (\theta+\varphi), b \sin (\theta+\varphi))$ and $R(a \cos (\theta-\varphi), b \sin (\theta-\varphi))$ on \mathcal{E}.
(i) Show that the equation of the tangent to \mathcal{E} at the point P is

$$
\frac{x \cos \theta}{a}+\frac{y \sin \theta}{b}=1
$$

(ii) Show that the chord $Q R$ is parallel to the tangent at P.
(iii) Deduce that $O P$ bisects the chord $Q R$.

Question 5 continues on page 7

Question 5 (continued)
(b) A submarine of mass m is travelling underwater at maximum power. At maximum power, its engines deliver a force F on the submarine. The water exerts a resistive force proportional to the square of the submarine's speed v.
(i) Explain why

$$
\frac{d v}{d t}=\frac{1}{m}\left(F-k v^{2}\right)
$$

where k is a positive constant.
(ii) The submarine increases its speed from v_{1} to v_{2}. Show that the distance travelled during this period is

$$
\frac{m}{2 k} \log _{e}\left(\frac{F-k v_{1}^{2}}{F-k v_{2}^{2}}\right)
$$

(c) A class of 22 students is to be divided into four groups consisting of 4, 5, 6 and 7 students.
(i) In how many ways can this be done? Leave your answer in unsimplified form.
(ii) Suppose that the four groups have been chosen. -
(c) 7 students. sudents is

In how many ways can the 22 students be arranged around a circular table if the students in each group are to be seated together? Leave your answer in unsimplified form.

End of Question 5

Question 6 (15 marks) Use a SEPARATE writing booklet.
(a)

A road contains a bend that is part of a circle of radius r. At the bend, the road is banked at an angle α to the horizontal. A car travels around the bend at constant speed v. Assume that the car is represented by a point of mass m, and that the forces acting on the car are the gravitational force $m g$, a sideways friction force F (acting down the road as drawn) and a normal reaction N to the road.
(i) By resolving the horizontal and vertical components of force, find expressions for $F \cos \alpha$ and $F \sin \alpha$.
(ii) Show that $F=\frac{m\left(v^{2}-g r \tan \alpha\right)}{r} \cos \alpha$.
(iii) Suppose that the radius of the bend is 200 m and that the road is banked to allow cars to travel at 100 kilometres per hour with no sideways friction force. Assume that the value of g is $9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

Find the value of angle α, giving full reasons for your answer.

Question 6 continues on page 9

Question 6 (continued)
(b)

In the diagram, \mathscr{C} is a circle with exterior point T. From T, tangents are drawn to the points A and B on \mathscr{C} and a line $T C$ is drawn, meeting the circle at C. The point D is the point on \mathscr{C} such that $B D$ is parallel to $T C$. The line $T C$ cuts the line $A B$ at F and the line $A D$ at E.

Copy or trace the diagram into your writing booklet.
(i) Prove that $\triangle T F A$ is similar to $\triangle T A E$.
(ii) Deduce that $T E . T F=T B^{2}$.
(iii) Show that $\triangle E B T$ is similar to $\triangle B F T$.
(iv) Prove that $\triangle D E B$ is isosceles.

End of Question 6

Question 7 (15 marks) Use a SEPARATE writing booklet.
(a) Suppose that $z=\frac{1}{2}(\cos \theta+i \sin \theta)$ where θ is real.
(i) Find $|z|$.

1

3

$$
1+z+z^{2}+z^{3}+\ldots=\frac{1}{1-z}
$$

is $\frac{2 \sin \theta}{5-4 \cos \theta}$.
(iii) Find an expression for

$$
1+\frac{1}{2} \cos \theta+\frac{1}{2^{2}} \cos 2 \theta+\frac{1}{2^{3}} \cos 3 \theta+\ldots
$$

in terms of $\cos \theta$.
(b) Consider the equation $x^{3}-3 x-1=0$, which we denote by $(*)$.
(i) Let $x=\frac{p}{q}$ where p and q are integers having no common divisors other than +1 and -1 . Suppose that x is a root of the equation $a x^{3}-3 x+b=0$, where a and b are integers.
Explain why p divides b and why q divides a. Deduce that (*) does not have a rational root.
(ii) Suppose that r, s and d are rational numbers and that \sqrt{d} is irrational. Assume that $r+s \sqrt{d}$ is a root of $(*)$.

Show that $3 r^{2} s+s^{3} d-3 s=0$ and show that $r-s \sqrt{d}$ must also be a root of (*).

Deduce from this result and part (i), that no root of (*) can be expressed in the form $r+s \sqrt{d}$ with r, s and d rational.
(iii) Show that one root of (*) is $2 \cos \frac{\pi}{9}$.
(You may assume the identity $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.)

Question 8 (15 marks) Use a SEPARATE writing booklet.
(a) (i) Show that $2 a b \leq a^{2}+b^{2}$ for all real numbers a and b.

3
Hence deduce that $3(a b+b c+c a) \leq(a+b+c)^{2}$ for all real numbers a, b and c.
(ii) Suppose a, b and c are the sides of a triangle. Explain why $(b-c)^{2} \leq a^{2}$. Deduce that $(a+b+c)^{2} \leq 4(a b+b c+c a)$.
(b) (i) Explain why, for $\alpha>0$,

$$
\int_{0}^{1} x^{\alpha} e^{x} d x<\frac{3}{\alpha+1}
$$

(You may assume $e<3$.)
(ii) Show, by induction, that for $n=0,1,2, \ldots$ there exist integers a_{n} and b_{n} such that

$$
\int_{0}^{1} x^{n} e^{x} d x=a_{n}+b_{n} e
$$

(iii) Suppose that r is a positive rational, so that $r=\frac{p}{q}$ where p and q are positive integers. Show that, for all integers a and b, either

$$
|a+b r|=0 \quad \text { or } \quad|a+b r| \geq \frac{1}{q} .
$$

(iv) Prove that e is irrational.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

