

HIGHER SCHOOL CERTIFICATE EXAMINATION

2000 MATHEMATICS 4 UNIT (ADDITIONAL)

Time allowed-Three hours
(Plus 5 minutes reading time)

Directions to Candidates

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 16.
- Board-approved calculators may be used.
- Answer each question in a SEPARATE Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

QUESTION 1 Use a SEPARATE Writing Booklet.
Marks
(a) Find $\int \frac{\cos x}{\sin ^{4} x} d x$.

2
(b) Use completion of squares to find $\int \frac{4}{x^{2}+6 x+10} d x$.
(c) (i) Find the real numbers a, b and c such that $\frac{9}{x^{2}(3-x)} \equiv \frac{a x+b}{x^{2}}+\frac{c}{3-x}$.
(ii) Find $\int \frac{9}{x^{2}(3-x)} d x$.
(d) Find $\int \sqrt{x} \ln x d x$.
(e) Use the substitution $t=\tan \frac{\theta}{2}$ to find $\int \frac{d \theta}{1+\sin \theta+\cos \theta}$.

QUESTION 2 Use a SEPARATE Writing Booklet.
(a) Find all pairs of integers x and y that satisfy $(x+i y)^{2}=24+10 i$.

Find the complex number a, given that i is a root of the equation.
(c) (i) Let $z=\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}$. Find z^{6}.
(ii) Plot, on the Argand diagram, all complex numbers that are solutions of $z^{6}=-1$.
(d) Sketch the region in the Argand diagram that satisfies the inequality $z \bar{z}+2(z+\bar{z}) \leq 0$.
(e)

In the Argand diagram, $O A B C$ is a rectangle, where $O C=2 O A$. The vertex A corresponds to the complex number ω.
(i) What complex number corresponds to the vertex C ?
(ii) What complex number corresponds to the point of intersection D of the diagonals $O B$ and $A C$?

QUESTION 3 Use a SEPARATE Writing Booklet.
(a) The diagram shows the graph of the (decreasing) function $y=f(x)$.

Draw separate one-third page sketches of the graphs of the following:
(i) $\quad y=|f(x)|$
(ii) $y=\frac{1}{f(x)}$
(iii) $y^{2}=f(x)$
(iv) the inverse function $y=f^{-1}(x)$.
(b)

The base of a solid $\&$ is the region in the $x y$ plane enclosed by the parabola $y^{2}=4 x$ and the line $x=4$, and each cross-section perpendicular to the x axis is a semi-ellipse with the minor axis one-half of the major axis.
(i) Show that the area of the semi-ellipse at $x=h$ is πh.
(You may assume that the area of an ellipse with semi-axes a and b is $\pi a b$.)
(ii) Find the volume of the solid $\&$.
(iii) Consider the solid \mathfrak{F}, which is obtained by rotating the region enclosed by the parabola and the line $x=4$ about the x axis. What is the relation between the volume of $\&$ and the volume of \mathfrak{I} ?
(c) A modern supercomputer can calculate 1000 billion (ie, 10^{12}) basic arithmetical operations per second. Use Stirling's formula to estimate how many years such a computer would take to calculate 100! basic arithmetical operations. Stirling's formula states that n ! is approximately equal to

$$
\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}
$$

Leave your answer in scientific notation.

QUESTION 4 Use a SEPARATE Writing Booklet.
(a)

The point $P\left(c p, \frac{c}{p}\right)$, where $p \neq \pm 1$, is a point on the hyperbola $x y=c^{2}$, and the normal to the hyperbola at P intersects the second branch at Q. The line through P and the origin O intersects the second branch at R.
(i) Show that the equation of the normal at P is

$$
p y-c=p^{3}(x-c p) .
$$

(ii) Show that the x coordinates of P and Q satisfy the equation

$$
x^{2}-c\left(p-\frac{1}{p^{3}}\right) x-\frac{c^{2}}{p^{2}}=0
$$

(iii) Find the coordinates of Q, and deduce that the $\angle Q R P$ is a right angle.
(b) The temperature T_{1} of a beaker of chemical, and the temperature T_{2} of a surrounding vat of cooler water, satisfy, in accordance with Newton's law of cooling, the equations

$$
\begin{aligned}
& \frac{d T_{1}}{d t}=-k\left(T_{1}-T_{2}\right) \\
& \frac{d T_{2}}{d t}=\frac{3}{4} k\left(T_{1}-T_{2}\right)
\end{aligned}
$$

where k is a positive constant.
(i) Show, by differentiation, that $\frac{3}{4} T_{1}+T_{2}=C$, where C is a constant.
(ii) Find an expression for $\frac{d T_{1}}{d t}$ in terms of T_{1}, and show $T_{1}=\frac{4}{7} C+B e^{-\frac{7}{4} k t}$ satisfies this differential equation for any constant B.
(iii) Initially, the beaker of chemical had a temperature of $120^{\circ} \mathrm{C}$ and the vat of water had a temperature of $22^{\circ} \mathrm{C}$. Ten minutes later, the temperature of the beaker of chemical had fallen to $90^{\circ} \mathrm{C}$.

Find the temperature of the beaker of chemical after a further ten minutes.

QUESTION 5 Use a SEPARATE Writing Booklet.
(a) Consider the polynomial 4

$$
p(x)=a x^{4}+b x^{3}+c x^{2}+d x+e
$$

where a, b, c, d and e are integers. Suppose α is an integer such that $p(\alpha)=0$.
(i) Prove that α divides e.
(ii) Prove that the polynomial

$$
q(x)=4 x^{4}-x^{3}+3 x^{2}+2 x-3
$$

does not have an integer root.

QUESTION 5 (Continued)
(b)

A string of length ℓ is initially vertical and has a mass P of $m \mathrm{~kg}$ attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction.

Let O be the centre of this circle and A the initial position of P. Let s denote the arc length $A P, v=\frac{d s}{d t}, \theta=\angle A O P$ and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P.

For parts (i) to (iv), assume that the mass is moving along the circle.
(i) Show that the tangential acceleration of P is given by $\frac{d^{2} s}{d t^{2}}=\frac{1}{\ell} \frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right)$.
(ii) Show that the equation of motion of P is $\frac{1}{\ell} \frac{d}{d \theta}\left(\frac{1}{2} v^{2}\right)=-g \sin \theta$.
(iii) Deduce that $V^{2}=v^{2}+2 \ell g(1-\cos \theta)$.
(iv) Explain why $T-m g \cos \theta=\frac{1}{\ell} m v^{2}$.
(v) Suppose that $V^{2}=3 g \ell$. Find the value of θ at which $T=0$.
(vi) Consider the situation in part (v). Briefly describe, in words, the path of P after the tension T becomes zero.

QUESTION 6 Use a SEPARATE Writing Booklet.
Marks
(a)

9

In the diagram, C_{1} and C_{2} are semicircles of radii r_{1} and r_{2}, with centres O_{1} and O_{2} on $A B$. The two semicircles touch at the point S on $A B$. The semicircle C_{3} has diameter $A B$, and R is the point on C_{3} such that $R S$ is tangential to both C_{1} and C_{2} (so $R S$ is perpendicular to $A B$). The other common tangent to C_{1} and C_{2} touches C_{1} at P and C_{2} at Q. The tangents $P Q$ and $R S$ intersect at M.
(i) State why $M P=M S=M Q$.
(ii) By using the 'intersecting chords theorem' (applied to C_{3}), or otherwise, prove that $R S^{2}=4 r_{1} r_{2}$.
(The intersecting chords theorem states that the products of the intercepts of two intersecting chords are equal.)
(iii) Show that $\angle O_{1} M O_{2}$ is a right angle, and deduce that $M S^{2}=r_{1} r_{2}$.
(iv) Deduce that $P S Q R$ is a rectangle.
(b) (i) Evaluate $\int_{0}^{\frac{1}{2}} \frac{d x}{\sqrt{1-x^{2}}}$.
(ii) Explain carefully why, for $n \geq 2$,

$$
\frac{1}{2} \leq \int_{0}^{\frac{1}{2}} \frac{d x}{\sqrt{1-x^{n}}} \leq \frac{\pi}{6}
$$

BLANK PAGE

Please turn over

QUESTION 7 Use a SEPARATE Writing Booklet.
(a) (i) Show that, for $x>0$,

$$
\ln x \leq x-1, \text { with equality only at } x=1
$$

(ii) From (i) deduce that

$$
\sum_{i=1}^{n} x_{i} \ln \frac{y_{i}}{x_{i}} \leq 0
$$

whenever $\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=1$, where $x_{i}>0, y_{i}>0$ for $i=1,2, \ldots, n$.
Show also that equality occurs only if $x_{i}=y_{i}$ for $i=1,2, \ldots, n$.
(iii) By considering part (ii) with equal values of y_{i} for $i=1,2, \ldots, n$, prove that the maximum value of

$$
\sum_{i=1}^{n} x_{i} \ln \frac{1}{x_{i}} \text { is } \ln n
$$

where $\sum_{i=1}^{n} x_{i}=1$ and $x_{i}>0$ for $i=1,2, \ldots, n$.
(iv) Does the result of part (iii) hold if \ln is replaced by $\log _{2}$? Give reasons for your answer.
(b)

In the diagram, P is an arbitrary point on the ellipse, and $Q P T$ is the tangent to the ellipse at P. The points S^{\prime} and S are the foci of the ellipse, and S^{*} is the reflection of S across the tangent, as shown. Let the line $S^{\prime} Q$ intersect the ellipse at R.
(i) Assuming $Q \neq P$, prove that

$$
S^{\prime} Q+Q S>S^{\prime} R+R S
$$

(ii) Deduce that the shortest path from S^{\prime} to S passing through a point on the tangent is that through P, having length $S^{\prime} P+P S$.
(iii) By considering the point S^{*}, deduce that $\angle Q P S^{\prime}=\angle T P S$.

QUESTION 8 Use a SEPARATE Writing Booklet.
Marks
(a) (i) Use the formula for the sum of a geometric series to show that

$$
\sum_{k=1}^{n}\left(z+z^{2}+\ldots+z^{k}\right)=\frac{n z}{1-z}-\frac{z^{2}}{(1-z)^{2}}\left(1-z^{n}\right), z \neq 1
$$

(ii) Let $z=\cos \theta+i \sin \theta$, where $0<\theta<2 \pi$. By considering the imaginary part of the left-hand side of the equation of part (i), deduce that

$$
\begin{aligned}
& \sum_{k=1}^{n}(\sin \theta+\sin 2 \theta+\ldots+\sin k \theta)=\frac{(n+1) \sin \theta-\sin (n+1) \theta}{4 \sin ^{2} \frac{\theta}{2}} . \\
& \left.\quad \text { You may assume that } \frac{z}{1-z}=\frac{i}{2 \sin \frac{\theta}{2}}\left(\cos \frac{\theta}{2}+i \sin \frac{\theta}{2}\right) \cdot\right)
\end{aligned}
$$

(b) A fair coin is to be tossed repeatedly. For integers r and s, not both zero, let $P(r, s)$ be the probability that a total of r heads are tossed before a total of s tails are tossed so that $P(0,1)=1$ and $P(1,0)=0$.
(i) Explain why, for $r, s \geq 1$,

$$
P(r, s)=\frac{1}{2} P(r-1, s)+\frac{1}{2} P(r, s-1)
$$

(ii) Find $P(2,3)$ by using part (i).
(iii) By using induction on $n=r+s-1$, or otherwise, prove that

$$
P(r, s)=\frac{1}{2^{n}}\left\{\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{s-1}\right\} \text { for } s \geq 1
$$

End of paper

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

