

HIGHER SCHOOL CERTIFICATE EXAMINATION

2000 MATHEMATICS 2/3 UNIT (COMMON)

Time allowed—Three hours (*Plus 5 minutes reading time*)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 16.
- Board-approved calculators may be used.
- Answer each question in a SEPARATE Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

QUESTION 1 Use a SEPARATE Writing Booklet.		Marks
(a)	Find the value of $\log_e 8$ correct to two decimal places.	2
(b)	Solve $x + 7 \ge 3$ and graph the solution on the number line.	2
(c)	What is the exact value of $\cos \frac{\pi}{6}$?	1
(d)	A bag contains red marbles and blue marbles in the ratio 2 : 3. A marble is selected at random. What is the probability that the marble is blue?	1
(e)	Solve the pair of simultaneous equations: x - y = 2 3x + 2y = 1.	2

(f) Solve $ x-5 = 3$.	2
-------------------------	---

(g) Sketch the line y = 2x + 3 in the Cartesian plane. 2

QUESTION 2 Use a SEPARATE Writing Booklet.

The diagram shows the points P(0, 2) and Q(4, 0). The point *M* is the midpoint of *PQ*. The line *MN* is perpendicular to *PQ* and meets the *x* axis at *G* and the *y* axis at *N*.

(a)	Show that the gradient of PQ is $-\frac{1}{2}$.	1
(b)	Find the coordinates of <i>M</i> .	2
(c)	Find the equation of the line MN.	2
(d)	Show that <i>N</i> has coordinates $(0, -3)$.	1
(e)	Find the distance NQ.	1
(f)	Find the equation of the circle with centre N and radius NQ .	2
(g)	Hence show that the circle in part (f) passes through the point P .	1
(h)	The point R lies in the first quadrant, and $PNQR$ is a rhombus. Find the coordinates of R .	2

In the diagram, *AB* is parallel to *DE*, *AD* is 5 cm, *DC* is 2 cm and *DE* is 1.5 cm. Find the length of *AB*.

D

2

5

С

3

3

(i)
$$\int \sec^2 5x \, dx$$

(ii)
$$\int_{-2}^{1} \frac{2}{x+3} dx$$

A

(d) Find the equation of the tangent to the curve $y = 2\log_e x$ at (1, 0).

QUESTION 4 Use a SEPARATE Writing Booklet.

(a)

In the diagram, *ABCD* is a square and *ABT* is an equilateral triangle. The line *TP* bisects $\angle ATB$, and $\angle PAB = 15^{\circ}$.

- (i) Copy the diagram into your Writing Booklet and explain why $\angle PAT = 75^{\circ}$.
- (ii) Prove that $\Delta TAP \equiv \Delta DAP$.
- (iii) Prove that triangle *DAP* is isosceles.
- (b) In the construction of a 5 km expressway a truck delivers materials from a base. After depositing each load, the truck returns to the base to collect the next load. The first load is deposited 200 m from the base, the second 350 m from the base, the third 500 m from the base. Each subsequent load is deposited 150 m from the previous one.
 - (i) How far is the fifteenth load deposited from the base?
 - (ii) How many loads are deposited along the total length of the 5 km expressway? (The last load is deposited at the end of the expressway.)
 - (iii) How many kilometres has the truck travelled in order to make all the deposits and then return to the base?

6

6

Marks

QUESTION 5 Use a SEPARATE Writing Booklet.

(a) Solve
$$\tan x = 2$$
 for $0 < x < 2\pi$.

Express your answer in radian measure correct to two decimal places.

- (b) Four white (W) balls and two red (R) balls are placed in a bag. One ball is selected at random, removed and replaced by a ball of the other colour. The bag is then shaken and another ball is randomly selected.
 - (i) Copy the tree diagram into your Writing Booklet. Complete the tree diagram, showing the probability on each branch.

- (ii) Find the probability that both balls selected are white.
- (iii) Find the probability that the second ball selected is white.
- (c) The population of a certain insect is growing exponentially according to $N = 200e^{kt}$, where t is the time in weeks after the insects are first counted.

At the end of three weeks the insect population has doubled.

- (i) Calculate the value of the constant *k*.
- (ii) How many insects will there be after 12 weeks?
- (iii) At what rate is the population increasing after three weeks?

6

QUESTION 6 Use a SEPARATE Writing Booklet.

(a) Sketch the curve
$$y = 1 - \sin 2x$$
 for $0 \le x \le \pi$. 3

(b) The number *N* of students logged onto a website at any time over a five-hour **9** period is approximated by the formula

$$N = 175 + 18t^2 - t^4, \quad 0 \le t \le 5.$$

- (i) What was the initial number of students logged onto the website?
- (ii) How many students were logged onto the website at the end of the five hours?
- (iii) What was the maximum number of students logged onto the website?
- (iv) When were the students logging onto the website most rapidly?
- (v) Sketch the curve $N = 175 + 18t^2 t^4$ for $0 \le t \le 5$.

Please turn over

Marks

QUESTION 7 Use a SEPARATE Writing Booklet.

(a) The area under the curve $y = \frac{1}{\sqrt{x}}$, for $1 \le x \le e^2$, is rotated about the *x* axis. **4** Find the exact volume of the solid of revolution.

(b) Estimate
$$\int_{0}^{1} \sin(1+x^2) dx$$
 by using Simpson's rule with three function values. 3

(c) The diagram shows the graphs of $y = x^2 - 2$ and y = x.

- (i) Find the x values of the points of intersection, P and Q.
- (ii) Calculate the area of the shaded region.

Marks

QUESTION 8 Use a SEPARATE Writing Booklet.

- (a) A particle is moving in a straight line, starting from the origin. At time *t* seconds the particle has a displacement of *x* metres from the origin and a velocity $v \text{ m s}^{-1}$. The displacement is given by $x = 2t 3\log_e(t+1)$.
 - (i) Find an expression for v.
 - (ii) Find the initial velocity.
 - (iii) Find when the particle comes to rest.
 - (iv) Find the distance travelled by the particle in the first three seconds.
- (b) An enclosure is to be built adjoining a barn, as in the diagram. The walls of the barn meet at 135° , and 117 metres of fencing is available for the enclosure, so that x + y = 117 where x and y are as shown in the diagram.

(i) Show that the shaded area of the enclosure in square metres is given by

$$A = 117x - \frac{3}{2}x^2 \; .$$

(ii) Show that the largest area of the enclosure occurs when y = 2x.

9

QUESTION 9 Use a SEPARATE Writing Booklet.

(a) (i) Without using calculus, sketch
$$y = \log_e x$$
. 3

(ii) On the same sketch, find, graphically, the number of solutions of the equation

$$\log_e x - x = -2.$$

The above diagram shows a sketch of the gradient function of the curve y = f(x).

In your Writing Booklet, draw a sketch of the function y=f(x) given that f(0)=0.

2

Marks

(c)

The diagram shows a square *ABCD* of side x cm, with a point *P* within the square, such that PC = 6 cm, PB = 2 cm and $AP = 2\sqrt{5}$ cm.

Let $\angle PBC = \alpha$.

- (i) Using the cosine rule in triangle *PBC*, show that $\cos \alpha = \frac{x^2 32}{4x}$.
- (ii) By considering triangle *PBA*, show that $\sin \alpha = \frac{x^2 16}{4x}$.
- (iii) Hence, or otherwise, show that the value of x is a solution of

$$x^4 - 56x^2 + 640 = 0.$$

(iv) Find *x*. Give reasons for your answer.

Please turn over

Marks

QUESTION 10 Use a SEPARATE Writing Booklet.

(a) A store offers a loan of \$5000 on a computer for which it charges interest at the rate of 1% per month. As a special deal, the store does not charge interest for the first three months however, the first repayment is due at the end of the first month.

A customer takes out the loan and agrees to repay the loan over three years by making 36 equal monthly repayments of M.

Let A_n be the amount owing at the end of the *n*th repayment.

- (i) Find an expression for A_3 .
- (ii) Show that $A_5 = (5000 3M)1 \cdot 01^2 M(1 + 1 \cdot 01)$
- (iii) Find an expression for A_{36} .
- (iv) Find the value of *M*.
- (b) The first snow of the season begins to fall during the night. The depth of the snow, *h*, increases at a constant rate through the night and the following day. At 6 am a snow plough begins to clear the road of snow. The speed, *v* km/h, of the snow plough is inversely proportional to the depth of snow. (This means $v = \frac{A}{h}$ where *A* is a constant.)

Let *x* km be the distance the snow plough has cleared and let *t* be the time in hours from the beginning of the snowfall. Let t = T correspond to 6 am.

(i) Explain carefully why, for $t \ge T$,

$$\frac{dx}{dt} = \frac{k}{t}$$
, where k is a constant.

(ii) In the period from 6 am to 8 am the snow plough clears 1 km of road, but it takes a further 3.5 hours to clear the next kilometre.

At what time did it begin snowing?

End of paper

Marks

6

BLANK PAGE

BLANK PAGE

BLANK PAGE

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$