

B OARD OF STUDIES
NEW SOUTH WALES

HIGHER SCHOOL CERTIFICATE EXAMINATION

1996
 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time allowed-Two hours
(Plus 5 minutes' reading time)

Directions to Candidates

- Attempt ALL questions.
- ALL questions are of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on page 12.
- Board-approved calculators may be used.
- Answer each question in a separate Writing Booklet.
- You may ask for extra Writing Booklets if you need them.

BLANK PAGE

QUESTION 1. Use a separate Writing Booklet.
Marks
(a) $(x-2)$ is a factor of the polynomial $P(x)=2 x^{3}+x+a$. Find the value of a.
(b) Find the acute angle between the lines $2 x+y=4$ and $x-y=2$, to the nearest degree.
(c) Let $A(-1,2)$ and $B(3,5)$ be points in the plane. Find the coordinates of the point C which divides the interval $A B$ externally in the ratio $3: 1$.
(d) A committee of 3 men and 4 women is to be formed from a group of 8 men and 6 women. Write an expression for the number of ways this can be done.
(e) Solve the inequality $\frac{2}{x-1} \leq 1$.
(f) Using the substitution $u=e^{x}$, find $\int \frac{e^{x}}{1+e^{2 x}} d x$.

QUESTION 2. Use a separate Writing Booklet.
Marks
(a) The function $f(x)=x^{3}-\ln (x+1)$ has one root between $0 \cdot 5$ and 1 .
(i) Show that the root lies between 0.8 and $0 \cdot 9$.
(ii) Hence use the halving-the-interval method to find the value of the root, correct to one decimal place.
(b) Use the table of standard integrals on page 12 to show that

$$
\int_{6}^{15} \frac{d x}{\sqrt{x^{2}+64}}=\ln 2 .
$$

(c) The points O and P in the plane are $d \mathrm{~cm}$ apart. A circle centre O is drawn to pass through P, and another circle centre P is drawn to pass through O. The two circles meet at S and T, as in the diagram.

(i) Show that triangle $S O P$ is equilateral.
(ii) Show that the size of angle SOT is $\frac{2 \pi}{3}$.
(iii) Hence find the area of the shaded region in terms of d.

QUESTION 3. Use a separate Writing Booklet.
Marks
(a)

Let $f(x)=\frac{1}{\sqrt{16-x^{2}}}$. The graph of $y=f(x)$ is sketched above.
(i) Show that $f(x)$ is an even function.
(ii) Find the area enclosed by $y=f(x)$, the x axis, $x=-2$, and $x=2$.
(b) Show that $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} x d x=\frac{\pi}{8}-\frac{1}{4}$.
(c) The function $g(x)$ is given by $g(x)=2+\cos x$. The graph $y=g(x)$ for $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}$ is rotated about the x axis.

Find the volume of the solid generated. (You may use the result of part (b).)
(d) The function $h(x)$ is given by

$$
h(x)=\sin ^{-1} x+\cos ^{-1} x, \quad 0 \leq x \leq 1 .
$$

(i) Find $h^{\prime}(x)$.
(ii) Sketch the graph of $y=h(x)$.

QUESTION 4. Use a separate Writing Booklet.
Marks
(a) Prove that $\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2 \quad($ for $\sin \theta \neq 0, \cos \theta \neq 0)$.

3

4

Grain is poured at a constant rate of 0.5 cubic metres per second. It forms a conical pile, with the angle at the apex of the cone equal to 60°. The height of the pile is h metres, and the radius of the base is r metres.
(i) Show that $r=\frac{h}{\sqrt{3}}$.
(ii) Show that V, the volume of the pile, is given by

$$
V=\frac{\pi h^{3}}{9}
$$

(iii) Hence find the rate at which the height of the pile is increasing when the height of the pile is 3 metres.

QUESTION 4. (Continued)
(c)

5

The figure shows the net of an oblique pyramid with a rectangular base. In this figure, $P X Z Y R$ is a straight line, $P X=15 \mathrm{~cm}, R Y=20 \mathrm{~cm}, A B=25 \mathrm{~cm}$, and $B C=10 \mathrm{~cm}$. Further, $A P=P D$ and $B R=R C$.

When the net is folded, points P, Q, R, and S all meet at the apex T, which lies vertically above the point Z in the horizontal base, as shown below.

(i) Show that triangle $T X Y$ is right-angled.
(ii) Hence show that T is 12 cm above the base.
(iii) Hence find the angle that the face $D C T$ makes with the base.

QUESTION 5. Use a separate Writing Booklet.
(a) A cup of hot coffee at temperature $T^{\circ} \mathrm{C}$ loses heat when placed in a cooler environment. It cools according to the law

$$
\frac{d T}{d t}=k\left(T-T_{0}\right),
$$

where t is time elapsed in minutes, and T_{0} is the temperature of the environment in degrees Celsius.
(i) A cup of coffee at $100^{\circ} \mathrm{C}$ is placed in an environment at $-20^{\circ} \mathrm{C}$ for 3 minutes, and cools to $70^{\circ} \mathrm{C}$. Find k.
(ii) The same cup of coffee, at $70^{\circ} \mathrm{C}$, is then placed in an environment at $20^{\circ} \mathrm{C}$. Assuming k remains the same, find the temperature of the coffee after a further 15 minutes.
(b) A particle is moving along the x axis. Its velocity v at position x is given by

$$
v=\sqrt{10 x-x^{2}}
$$

Find the acceleration of the particle when $x=4$.
(c) Mice are placed in the centre of a maze which has five exits. Each mouse is equally likely to leave the maze through any one of the five exits. Thus, the

5

QUESTION 6. Use a separate Writing Booklet.

A trolley is moving in simple harmonic motion about the origin O. The displacement, x metres, of the centre of the trolley from O at time t seconds is given by

$$
x=6 \sin \left(2 t+\frac{\pi}{4}\right)
$$

(a) State the period and amplitude of the motion.
(b) Sketch the graph of $x=6 \sin \left(2 t+\frac{\pi}{4}\right)$ for $0 \leq t \leq 2 \pi$.
(c) Find the velocity of the trolley when $t=0$.
(d) Find the first time after $t=0$ when the centre of the trolley is at $x=3$.
(e)

A particle P, on top of the trolley, is moving in simple harmonic motion about the centre of the trolley. Its displacement, w metres, from the centre of the trolley at time t seconds, is given by

$$
w=\sin (2 t) .
$$

The displacement, y metres, of P from the origin is the sum of the two displacements x and w, so that

$$
y=6 \sin \left(2 t+\frac{\pi}{4}\right)+\sin (2 t) .
$$

(i) Show that P is moving in simple harmonic motion about O.
(ii) Find the amplitude of this motion.

QUESTION 7. Use a separate Writing Booklet.
Marks
(a) Using the fact that $(1+x)^{4}(1+x)^{9}=(1+x)^{13}$, show that

$$
{ }^{4} C_{0}{ }^{9} C_{4}+{ }^{4} C_{1}{ }^{9} C_{3}+{ }^{4} C_{2}{ }^{9} C_{2}+{ }^{4} C_{3}{ }^{9} C_{1}+{ }^{4} C_{4}{ }^{9} C_{0}={ }^{13} C_{4}
$$

(b) Consider the function $f(x)=\frac{1}{4}\left[(x-1)^{2}+7\right]$.
(i) Sketch the parabola $y=f(x)$, showing clearly any intercepts with the axes, and the coordinates of its vertex. Use the same scale on both axes.
(ii) What is the largest domain containing the value $x=3$, for which the function has an inverse function $f^{-1}(x)$?
(iii) Sketch the graph of $y=f^{-1}(x)$ on the same set of axes as your graph in part (i). Label the two graphs clearly.
(iv) What is the domain of the inverse function?
(v) Let a be a real number not in the domain found in part (ii). Find $f^{-1}(f(a))$.
(vi) Find the coordinates of any points of intersection of the two curves $y=f(x)$ and $y=f^{-1}(x)$.

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

