

No. of Questions - 24
No. of Printed Pages -7
उच्च्च माध्यमिक परीक्षा, 2011
SENIOR SECONDARY EXAMINATION, 2011
वैकल्पिक वर्ग I तथा II - कला व विज्ञान वर्ग
(OPTIONAL GROUPS I \& II - HUMANITIES AND SCIENCE)
गणित — द्वितीय पत्र
(MATHEMATICS - Second Paper)
समय : $3 \frac{1}{4}$ घण्टे
पूर्णांक : 60

परीक्षार्थियों के लिए आवश्यक निर्देश :

GENERAL INSTRUCTIONS FOR EXAMINEES :

1. परीक्षार्थी सर्वप्रथम अपने प्रश्न पत्र पर नामांक अनिवार्यतः लिखें ।

Candidate must write first his / her Roll No. on the question paper compulsorily.
2. प्रश्न पत्र के हिन्दी व अंग्रेजी रूपान्तर में किसी प्रकार की त्रुटि / अन्तर / विरोधाभास होने पर हिन्दी भाषा के प्रश्न को सही मानें ।

If there is any error / difference / contradiction in Hindi and English versions of the question paper, the question of Hindi version should be treated valid.
3. सभी प्रश्न करने अनिवार्य हैं । प्रश्न क्रमांक 23 व 24 में आन्तरिक विकल्प हैं । All questions are compulsory. Question Nos. 23 and 24 have internal choice.
4. प्रश्न क्रमांक $\mathbf{2}$ से $\mathbf{7}$ तक अति लघूत्तरात्मक प्रश्न हैं ।

Question Nos. $\mathbf{2}$ to $\mathbf{7}$ are Very Short Answer type.
5. प्रत्येक प्रश्न का उत्तर दी गई उत्तर-पुस्तिका में ही लिखें ।

Write the answer of each question in answer-book only.
6. जिस प्रश्न के एक से अधिक समान अंक वाले भाग हैं, उन सभी भागों का हल एक साथ सतत् लिखें ।

For questions having more than one part carrying similar marks, the answers of those parts are to be written together in continuity.
7. प्रश्न क्रमांक $\mathbf{8}$ का लेखाचित्र ग्राफ-पेपर पर बनाइए ।

Graph for Question No. 8 should be drawn on the graph paper.
8. अपनी उत्तर-पुस्तिका के पृष्ठों के दोनों ओर लिखिए । यद्धि कोई रफ़ कार्य करना हो, तो उत्तर-पुस्तिका के अंतिम पृष्ठों पर करें और इन्हें तिरछी लाइनों से काटकर उन पर 'ऱफ कार्य' लिख दें ।

Write on both sides of the pages of your answer-book. If any rough work is to be done, do it on last pages of the answer-book and cross with slant lines and write 'Rough Work' on them.
9. प्रश्न क्रमांक $\mathbf{1}$ के चार भाग (i, ii, iii तथा iv) हैं । प्रत्येक भाग के उत्तर के चार विकल्प (क, ख, ग एवं घ) हैं। सही विकल्प का उत्तराक्षर उत्तर-पुस्तिका में निम्नानुसार तालिका बनाकर लिखें :

There are four parts (i, ii, iil and iv) in Guestion No. 1. Each part has four alternatives A, B, C and D. Write the letter of the correct alternative in the answer-book at a place by making a table as mentioned below :

प्रश्न क्रमांक Question No.	उत्तर का सही विकल्प Correct letter of the Answer
1. (i)	
1. (ii)	
1. (iii)	
1. (iv)	

1. (i) यदि वक्र $a y+x^{2}=7$ और $x^{3}=y$ बिन्दु (1, 1$)$ पर लम्बकोणीय रूप से काटते हैं, तो a बराबर है
(क) 1
(ख) 6
(ग) -6
(घ) 0 .

If the curves $a y+x^{2}=7$ and $x^{3}=y$ cut orthogonally at the point (1,1), then a is equal to
(A) 1
(B) 6
(C) - 6
(D) 0 .
(ii) अन्तराल जिसमें फलन $f(x)=x^{2}-2 x-3$ ह्रासमान है, है
(क) $(1, \infty)$
(ख) $(-\infty, 2)$
(ग) $(-1,3)$
(घ) $(-\infty, 1)$.

Interval in which function $f(x)=x^{2}-2 x-3$ is decreasing, is
(A) $(1, \infty)$
(B) $(-\infty, 2)$
(C) $(-1,3)$
(D) $(-\infty, 1)$.
(土ii) $\int e^{2 \log _{e} x}\left(x^{4}\right) \mathrm{d} x$ का मान है
(क) $\frac{x^{7}}{7}+c$
(ख) $\frac{x^{6}}{6}+c$
(ग) $\frac{x^{5}}{5}+c$
(घ) $e^{\log _{e} x^{7}}+c$.

The value of $\int e^{2 \log _{e} x}\left(x^{4}\right) \mathrm{d} x$ is
(A) $\frac{x^{7}}{7}+c$
(B) $\frac{x^{6}}{6}+c$
(C) $\frac{x^{5}}{5}+c$
(D) $\quad e^{\log _{e} x^{7}}+c$.
(iv) $\int \sqrt{\left(\frac{1-\cos 2 x}{1+\cos 2 x}\right)} \mathrm{d} x$ का मान है
(क) $\log _{e} \cos x+c$
(ख) $\sqrt{2} \log _{e} \cos x+c$
(ग) $\log _{e} \sec x+c$
(घ) $\log _{e} \sin x+c$

The value of $\int \sqrt{\left(\frac{1-\cos 2 x}{1+\cos 2 x}\right)} d x$ is
(A) $\log _{e} \cos x+c$
(B) $\sqrt{2} \log _{e} \cos x+c$
(C) $\log _{e} \sec x+c$
(D) $\log _{e} \sin x+c$.

फलन $f(x)=\frac{|2 x-5|}{2 x-5}$ की $x=\frac{5}{2}$ पर बायीं सीमा ज्ञात कीजिए ।
Find the left hand limit of the function $f(x)=\frac{|2 x-5|}{2 x-5}$ at $x=\frac{5}{2}$.

Evaluate : $\operatorname{Lim}_{x \rightarrow 2} \frac{x^{2}-4}{x-2}$.
मान ज्ञात कीजिए : $\operatorname{Lim}_{x \rightarrow 1} \frac{\log x}{(x-1)}$.
Evaluate: $\operatorname{Lim}_{x \rightarrow 1} \frac{\log x}{(x-1)}$
मान ज्ञात कीजिए : $\int \tan ^{2} x \mathrm{~d} x$.
Evaluate: $\int \tan ^{2} x \mathrm{~d} x$.
मान ज्ञात कीजिए : $\int \frac{1}{x-\sqrt{x}} \mathrm{~d} x$.
Evaluate: $\int \frac{1}{x-\sqrt{x}} \mathrm{~d} x$.
परवलय $x^{2}=y$ तथा सरल रेखा $x=2$ से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए ।
Find the area of the region bounded by the parabola $x^{2}=y$ and the straight line $x=2$.
निम्न फलन का आरेख (लेखाचित्र) खींचिए :

$$
f(x)=\cos \frac{x}{2}, x \in[-\pi, \pi]
$$

Draw the graph of the following function :

$$
f(x)=\cos \frac{x}{2}, x \in[-\pi, \pi]
$$

a तथा b के मान ज्ञात कीजिए, यदि निम्न फलन $x=1$ पर संतत हो :
$f(x)=\left\{\begin{array}{cc}2 x+a ; & \text { जब } x>1 \\ b ; & \text { जब } x=1 \\ 5 x-2 ; & \text { जब } x<1\end{array}\right.$
If the function $f(x)=\left\{\begin{array}{cl}2 x+a ; & \text { when } x>1 \\ b ; & \text { when } x=1 \\ 5 x-2 ; & \text { when } x<1\end{array}\right.$
is continuous at $x=1$, then find the value of a and b.
10. फलन $f(x)=\left\{\begin{array}{cc}x^{2} \sin \left(\frac{1}{x}\right) ; & x \neq 0 \\ 0 ; & x=0\end{array}\right.$ की बिन्दु $x=0$ पर अवकलनीयता का परीक्षण कीजिए ।
Test the differentiability of the following function at the point $x=0$:

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin \left(\frac{1}{x}\right) ; & x \neq 0 \tag{2}\\
0 ; & x=0
\end{array}\right.
$$

11. यदि $y=e^{x}+a^{x}+x^{n}+x^{x}$, तो $\frac{\mathrm{d} y}{\mathrm{~d} x}$ का मान ज्ञात कीजिए।

If $y=e^{x}+a^{x}+x^{n}+x^{x}$, then find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
12. यदि $y=\sin \left(\log _{e} x\right)$, तो सिद्ध कीजिए कि

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0
$$

If $y=\sin \left(\log _{e} x\right)$, then prove that

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0 \tag{2}
\end{equation*}
$$

13. मान ज्ञात कीजिए :
$\lim _{n \rightarrow \infty}\left[\frac{1}{n^{2}} \sec ^{2} \frac{1}{n^{2}}+\frac{2}{n^{2}} \sec ^{2} \frac{4}{n^{2}}+\frac{3}{n^{2}} \sec ^{2} \frac{9}{n^{2}}+\ldots+\frac{1}{n} \sec ^{2} 1\right]$.
Evaluate :
$\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{1}{n^{2}} \sec ^{2} \frac{1}{n^{2}}+\frac{2}{n^{2}} \sec ^{2} \frac{4}{n^{2}}+\frac{3}{n^{2}} \sec ^{2} \frac{9}{n^{2}}+\ldots+\frac{1}{n} \sec ^{2} 1\right]$
14. अवकल समीकरण $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\sin ^{2} x+\cos ^{2} x$ का व्यापक हल ज्ञात कीजिए ।

Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\sin ^{2} x+\cos ^{2} x \tag{2}
\end{equation*}
$$

15. प्रदर्शित कीजिए कि सरल रेखा $\frac{x}{a}+\frac{y}{b}=2$, वक्र $\left(\frac{x}{a}\right)^{3}+\left(\frac{y}{b}\right)^{3}=1$ को बिन्दु (a, b) पर स्पर्श करती है ।
Show that the line $\frac{x}{a}+\frac{y}{b}=2$, touches the curve $\left(\frac{x}{a}\right)^{3}+\left(\frac{y}{b}\right)^{3}=1$ at the point (a, b).
16. फलन $f(x)=x-\frac{1}{x}$ के लिए अन्तराल [1,3] में लाग्रांज माध्य मान प्रमेय का सत्यापन कीजिए एवं दिये गये अन्तराल में c का मान ज्ञात कीजिए ।

Verify Lagrange's mean value theorem for the function $f(x)=x-\frac{1}{x}$ in the interval $[1,3]$ and find the value of c in the given interval.
17. सिद्ध कीजिए कि एक दिये गये वृत्त के अन्दर बनने वाला अधिकतम क्षेत्रफल का आयत एक वर्ग होता है ।

Prove that the rectangle which has the maximum area inscribed in a given circle is the square.
18. मान ज्ञात कीजिए :

$$
\int \frac{e^{x}(2+\sin 2 x)}{(1+\cos 2 x)} \mathrm{d} x .
$$

Evaluate :

$$
\int \frac{e^{x}(2+\sin 2 x)}{(1+\cos 2 x)} d x
$$

19. मान ज्ञात कीजिए : $\int \sqrt{\left(3+2 x-x^{2}\right)} \mathrm{d} x$.

Evaluate : $\int \sqrt{\left(3+2 x-x^{2}\right)} \mathrm{d} x$.
20. वृत $x^{2}+y^{2}=4$, रेखा $x=\sqrt{3} y$ तथा x-अक्ष के मध्य प्रथम पाद में स्थित क्षेत्र का क्षेत्रफल ज्ञात कीजिए ।

Find the area bounded by the circle $x^{2}+y^{2}=4$, the line $x=\sqrt{3} y$ and x-axis in the first quadrant.
21. मान ज्ञात कीजिए :

$$
\int \frac{1}{(\sec x+\operatorname{cosec} x)} \mathrm{d} x
$$

Evaluate :

$$
\int \frac{1}{(\sec x+\operatorname{cosec} x)} \mathrm{d} x .
$$

22. मान ज्ञात कीजिए : $\int_{0} \frac{x \sin x}{1+\sin x} \mathrm{~d} x$.

Evaluate: $\int^{\pi} \frac{x \sin x}{1+\sin x} \mathrm{~d} x$.
23. प्रथम सिद्धान्त से $\frac{2 x+3}{3 x-2}$ का x के सापेक्ष अवकल गुणांक ज्ञात कीजिए ।

अथवा
प्रथम सिद्धांत से $\sin ^{-1}(a x+b)$ का x के सापेक्ष अवकल गुणांक ज्ञात कीजिए ।
Find the differential coefficient of $\frac{2 x+3}{3 x-2}$ with respect to x by first principle.

OR
Find the differential coefficient of $\sin ^{-1}(a x+b)$ with respect to x by first principle.
24. निम्न अवकल समीकरण को हल कीजिए :

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2}+x y+y^{2}
$$

अथवा
निम्न अवकल समीकरण को हल कीजिए :

$$
\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=\frac{1}{\left(x^{2}-1\right)} .
$$

Solve the following differential equation :

$$
x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2}+x y+y^{2}
$$

OR

Solve the following differential equation :

$$
\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=\frac{1}{\left(x^{2}-1\right)} .
$$

