

CHEMISTRY

Paper – 1

(THEORY)

Three hours and a quarter

(The first 15 minutes of the examination are for reading the paper only. Candidates must NOT start writing during this time).

Answer **all** questions in Part I. From Part II, answer any four questions from Section A, any three questions from Section B and any two questions from Section C.

All workings, including rough work, should be done on the same sheet as, and adjacent to the rest of the answer.

The intended marks for questions are given in brackets [].

Balanced equations must be given wherever possible and diagrams where they are helpful.

When solving numerical problems, all essential working must be shown.

In working out problems, use the following data:

Gas Constant R = 1.987 cal deg⁻¹ mol⁻¹ = 8.314 JK⁻¹ mol⁻¹ = 0.0821 dm³ atm K⁻¹ mol⁻¹

-

PART I (40 marks)

Answer all questions.

Question 1.

(a) Correct the following statements.

[4]

- (i) Depression in freezing point is proportional to the molarity of the solution.
- (ii) Stronger the base, lower is its dissociation constant.
- Specific conductance is the conductance of a solution containing specific number of ions.
- (iv) Sulphonation of benzene is nucleophillic addition reaction.

		S.	
		.ug	in the second second
(b)	Read alter your	d the following questions carefully. For each question there are four natives A, B, C and D. Choose the correct alternative and write it in answer sheet.	Bounty.c.
(i)	The	compound COOH-CH=CH-COOH can exhibit	[1]
	А	chain isomerism.	
	В	optical isomerism.	
	С	geometrical isomerism.	
	D	optical and chain isomerism.	
(ii)	The	property where magnitude does not depend upon the number of moles	[1]
	prese	ent in the system is called	
	А	colligitive property.	
	В	extensive property.	
	С	intensive property.	
	D	optical property.	
(iii)	The principle ore of copper is [1]		
	А	cuprites.	
	В	malachite.	
	С	copper glance.	
	D	copper pyrites	
(iv)	Whe	on acetaldehyde reacts with ammonia, the product formed is	[1]
	А	acetaldoxime.	
	В	acetaldehyde ammonia.	
	С	acetaldehyde hydrazone.	
	D	acetaldehyde cynohydrin.	
(v)	In a	[1]	
	А	produce more neutron.	
	В	stop the nuclear reaction.	
	С	increase the speed of neutron.	
	D	slow down the speed of neutron.	

		S.	
		- de	
(vi)	The	forces present among the carbon atoms of diamond are	TBO.
()	А	ionic bond.	17m
	В	metallic bond.	.67
	С	covalent bond.	3
	D	Vanderwaal's force.	
(vii)	Rate	constant of reaction depend upon	[1]
~ /	А	time.	
	В	pressure.	
	С	temperature.	
	D	initial concentration.	
(viii)	When H_2S is passed through acidified KMnO ₄ , the product formed is [1]		
~ /	А	KHSO ₄ .	
	В	MnO ₂ .	
	С	$K_2S.$	
	D	S.	
(ix)	Whie	ch of the following is an electrophile?	[1]
	А	NH ₃	
	В	BCl_3	
	С	AlCl ₄	
	D	CH ₃ OH	
(x)	In a reversible reaction, the catalyst [1]		
	А	decreases the activation energy of both forward and backward reaction.	
	В	increases the activation energy of the backward reaction.	
	С	decreases the activation energy of the backward reaction.	
	D	increases the activation energy of the forward reaction.	

(hydration, tetrahedral, alkyl halide, fusion, isotropy, inversion, anisotropy, alkoxide, fission, trigonal planar)

- $_{1}H^{2} + _{1}H^{3} \rightarrow _{2}H^{4} + _{0}n^{1}$ is a nuclear reaction (i)
- (ii) Amorphous solids show
- In Williamson's synthesis, ethers are prepared by the reaction of an (iii) with
- (iv) Hydrolysis of sucrose is called
- (v) The shape of BF₃ is

(d) Match the items of column A with the items in column B. Rewrite the correct pairs in your answer booklet.

Column A **Column B** (a) Vanderwaal's forces (i) Cryoscopy (ii) Nylon 66 (b) poison catalyst (iii) Hydrogen fluoride (c) Cottrell's method (iv) Electron gas theory (d) metallic bond (v) Starch (e) positive catalyst (f) co-polymer (vi) Ebullioscopy (vii) Molybdenum (g) Beckman's method (viii)Manganese dioxide (h) promoter (i) glucose (j) inter-molecular hydrogen bond

[4]

		Stu	
		ic.	nre .
(e)	Answ	er the following questions.	24
	(i)	Complete the following reaction:	12
		$_{13}\mathrm{Al}^{27} + \dots \rightarrow _{15}\mathrm{P}^{30} + _{0}\mathrm{n}^{1}$	
	(ii)	Why is glycerol more viscous than ethanol?	[1]
	(iii)	State the two basic principles of chromatography.	[2]
	(iv)	Give the structural formula of Tetra ethyl lead and Ethyl magnesium	
		bromide.	[2]
	(v)	Under what conditions does silicon react with carbon? What is the	
		product formed?	[2]
	(vi)	Categorize the following into electrophile and nucleophile:	
		NO_2^+ , NH_3 , CN^- , BF_3	[2]
	(vii)	How is iodoform prepared from acetone?	[1]
	(viii)	Name a α amino acid.	[1]
	(ix)	What are detergents?	[1]
	. /		
	(x)	How will you prepare benzene from phenol?	[1]
	(xi)	Write the chemical equation for the synthesis of Teflon.	[1]
	(xii)	How will you detect primary amine?	[1]

PART II

SECTION A (28 marks)

Answer any **four** questions.

Question 2.

	Stute	Ter.	
	PART II	TBOUL	
	SECTION A (28 marks)	2	
	Answer any four questions.	203.	
Ques	tion 2.	13	
(a)	The boiling point of pure benzene is 56.2°C. A solution of 0.81g of		1
	non-volatile solute in 10g of acetone is boiled at 58.5°C. What is the		ļ
	molecular weight of the solute if the ebullioscopic constant for acetone		
	is 1.71 K mol ⁻¹ Kg ⁻¹ ?	[2]	
(b)	At 300K, 36g of glucose present per litre in its solution has an osmotic pressure of 4.58 bar. If the osmotic pressure of solution is 1.52 bar		
	at the same temperature, what would be its concentration?	[2]	
		[_]	
(c)	Draw the molecular orbital energy level diagrams for H_2^- , H_2 , H_2^+ and		
	calculate their bond order.	[3]	

Question 3.

Complete the following nuclear equations: [2] (a) ${}_{96}\text{Cm}^{246} + {}_{6}\text{C}^{12} \rightarrow {}_{102}\text{No}^{254} + \dots$ (i) $_{94}Pu^{239} + \dots \rightarrow _{96}Cm^{242} + _{0}n^{1}$ (ii) The partition coefficient between ether and water is 3. Calculate the (b)

- amount of an organic compound x from 1000 cm^3 of water containing 10g of x using 500 cm of ether.[4] (i) One extraction
 - In two extractions using 250cm³ each time (ii)
- Name two emulsion type of colloids. [1] (c)

		3.				
		THE				
0			TRO.			
Ques	stion 4.		TH,			
(a)	The cell reaction of a galvanic cell is given as follows: $\overline{A} = 2 + \frac{1}{2} + \frac{1}$					
	Zn _(s)	$+ 2Ag^+_{(aq)} \rightarrow Zn^{2+}_{(aq)} + 2Ag_{(s)}$	OB			
	(i)	Which of the electrode is negatively charged?				
	(ii)	Show the direction of the flow of current.				
	(iii)	Write the reactions at the anode and cathode.				
(b)	The l	half life for radioactivity decay of C^{14} is 5730 years. An archeological				
	artifa	artifact was found to have only 80% of the C^{14} activity as found in a living tree.				
	Estin	nate the age of the artifact.	[2]			
(c)	(i)	Write the Arrhenius equation.	[1]			
	(ii)	How many atoms are present in the face centered cubic unit cell?	[1]			
Ques	tion 5.					
(a)	Nam	e <i>two</i> factors that influence the rate of chemical reaction.	[1]			
(b)	A first order reaction is 50% complete in 30 minutes at 27°C. Calculate					
	the ra	ate constant of the reaction at 27°C.	[3]			
(c)	What	t is hydrolysis? Why is a solution of CH ₃ COONa alkaline and				
	NH_4	Cl acidic?	[3]			
Ques	tion 6.					
(a)	Classify the following as Bronsted acid and Bronsted base. [2]					
	H_3O^+	$^{+}$, NH ₄ $^{+}$, Cl ⁻ , OH ⁻				
(b)	The s	The solubility product of Mg (OH) ₂ at 298K is 1.4×10^{-11} . Find the				
	solut	ility of Mg (OH) ₂ ? [At. Wt. Mg = 24, O = 16, H = 1]	[3]			
(c)	What	What type of hybridization is shown by the following structures: [2]				
	(i)	linear				
	(ii)	trigonal				
	(iii)	tetrahedral				

(ii) Give *two* methods by which colloidal solution can be purified? [1]

SECTION B (18 marks)

Answer any three questions.

Question 8.

(a)	What are the steps involved in the extraction of silver from its sulphide	
	ore by the cyanide process. Write appropriate balanced chemical equations.	[4]
(b)	Calculate the free energy change when one mole of an ideal gas at 27°C is	
	reduced from 5.0 atm to 0.5 atm.	[2]

Question 9.

(a) Complete the following reactions and name the type of reaction.	[3]
---	-----

- (i) $CH_3Br + KOH_{(aq)} \rightarrow$
- (ii) $H_2C=CH_2+HCl \rightarrow$
- (iii) $C_2H_5OH \xrightarrow{Conc.H_2SO_4}{443 \text{ K}}$

		Stude	
(b)	Write	the balanced chemical equation for each of the following reactions:	BOL
	(i)	Sodium thiosulphate with aqueous silver nitrate	12
	(ii)	Copper sulphate with aqueous potassium iodide	. CO.
	(iii)	Hydrogen peroxide with acidified ferrous sulphate solution	2
Quest	ion 10.		
(a)	Give <i>t</i>	wo uses of silicones and their corresponding properties.	[2]
(b)	Explai	n SN ¹ reaction with relevant chemical reactions and its mechanism.	[4]
Quest	ion 11.		
(a)	Give a	n account of the manufacture of iodine from sea weeds.	[3]
(b)	Calcul	ate the work done in Joules when 3 moles of an ideal gas at 27°C d isothermally and reversibly from 10 atm to 1 atm	
	(1atm	$= 1.013 \text{ x } 105 \text{ Nm}^{-2}$).	[3]

SECTION C (14 marks) Answer any **two** questions.

Question 12.

(a)	Perform the following conversions:		
	(i)	acetaldehyde to chloroform	
	(ii)	hydrogen cyanide to formic acid	
(b)	Give tl acetam	ne balanced equation for the preparation of methyl amine from ide.	[2]
(c)	Give tl	ne balanced chemical equation for the preparation of soap.	[1]
Questi	on 13.		
(a)	An org	anic compound (A) has a characteristic odour. When	
	compo	und (A) is treated with NaOH it forms two compounds (B) and (C).	
	Compo	bund (B) has a molecular formula C_7H_8O which on oxidation gives	

StudentBounty.com back compound (A). Compound (C) is a sodium salt of an acid. When compound (C) is heated with soda lime it yields an aromatic hydrocarbon (D). Identify the compounds (A), (B), (C) and (D). (b) Differentiate between thermoplastics and thermosetting plastics on the basis [3] of their structures and properties. Question 14. Write the balanced equations for the following reactions. What do you (a) [4] observe in each case? (i) Glucose is warmed with Tollen's reagent. Fructose is treated with excess of phenylhydrazine (ii) (b) Write the name of the product formed by the reaction of formaldehyde and ammonia. Write one of its uses. [2] Draw the structure of nitroethane. [1] (c)
