	native No):							Inde	ex No	o: [0 1	0 0	8				Un	EL.
						Supe	ervis Invi	ing I igilai	Exami tor's ii	iner's nitial	s/ l:								
							Nev	v Cu	rricul	lum								•	
Math REA	ematics D THE F	OLI	OW	/IN(G DIRE (TIC)NS	CAI	REFU	ILLY	7.	Writin Total I	ig Tii Mark	me: 3 ks :	3 hoi 100	urs			
1.	Do not having	write read	e for over	the f	first fifte question	en m s, yo	inu u wi	tes. 7 11 be	This tin given	me is Thr	to be ee ho	e spent i urs to a	eadin mswe	ng th er all	e que ques	estio stioi	ons 1s.	After	
2.	Write y page or	our i 1ly.	ndex	x nu	mber in	the s	pace	prov	vided (on th	e top	right h	and	corn	er of	f th	is co	ver	
3.	In this p to answ question II from	paper ver A ns (q each	r, the ALL uesti ques	ere a the on n stion	re three question umbers 1 . The int	sectins in 14 -2 ende	ions: Sec 1). 1 d ma	: Sec ction Each arks	tion A A an quest for a q	A, Seo nd Section h questi	ction ectior as tw on or	B and S B. Ur o parts, its part	Section I der and I and I and I are	on C Secti d II. state	. You on (Atte ed in	u ar C, t empt the	re exp here t eith brac	pected are { er I o kets.	1 3 r
4.	Read th in the q	e dir uest	ectic ion b	ons to ook	o each qu let itself.	uestic	on ca	arefu	lly and	d wri	te all	your a	nswei	rs in	the s	spac	e pro	ovideo	ł
5.	Remem	ber t	o wr	ite q	uickly b	ut ne	atly	•											
	You are	e not	allov	ved	to remov	e any	y pag	ge fro	om thi	s boo	oklet.								
б.	Do not leave the examination hall before you have made sure that you have answered all the required number of questions.																		
6. 7.	Do not required	d nur	nber	of q	uestions.														

Section	Α							В									(
Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Award																					
Marker's initial																					

BCSE/Maths/2008

Section A (2 x 10 = 20 marks)

Answer all questions

Question 1

- StudentBounts.com One dimension of the product matrix of two matrices is 5×2 . What are the dimensions of the (i) two matrices?
 - $5 \times 2, 4 \times 2$ Α. B. $5 \times 4, 4 \times 3$ С $2 \times 5, 5 \times 2$ D. $5 \times 2, 2 \times 2$

Answer.....

The value of *m* in the radicals $5\sqrt{3} \times 4\sqrt{3} + \sqrt{32} - 60 = m\sqrt{2}$ is. (ii)

> $4\sqrt{2}$ A. B. 5 C. 4 $4\sqrt{3}$ D.

Answer.....

(iii) w as the function of x in the expression 3w+8x=7 is.

A.
$$f(x) = \frac{7 - 8x}{3}$$

B. $f(w) = \frac{7 - 3w}{8}$
C. $f(x) = \frac{8x - 7}{3}$
D. $f(w) = \frac{3w + 7}{8}$
Answer.....

Which of the following is the most efficient shape with a constant perimeter? (iv)

- Regular Hexagon A.
- Regular Octagon B.
- Regular Quadrilateral C.
- Regular Pentagon D.

Answer.....

BCSE/Maths/2008

(v) The value of x in the quadratic equation $5x-6=x^2$ is.

A. x = 2,3B. $x = \frac{5}{6},1$ C. x = 5,6D. $x = \frac{2}{3},\frac{1}{2}$

Answer.....

(vi) The equation of the parabola that would result from composite transformation of $(x, y) \rightarrow (x+4, -3y+6)$ to the graph of $y = x^2$ is.

A. $y = 6(x-4)^2 - 3$ B. $y = 3(x-4)^2 - 6$ C. $y = -3(x+4)^2 + 6$ D. $y = -3(x-4)^2 + 6$

Answer.....

(vii) The probability of drawing a club and then a heart from a deck of 52 cards, if the first card is replaced would be.

А.	$\frac{1}{26}$
B.	$\frac{1}{16}$
C.	$\frac{1}{4}$
D.	$\frac{1}{52}$

Answer.....

(viii) The area of the parallelogram given below is

BCSE/Maths/2008

(ix) What is the bearing of the single vector for the trips below?

C. 230 degreesD. 310 degrees

A.

B.

Answer.....

(x) The number of lines of symmetry in a regular hexagon is.

 A.
 5

 B.
 6

 C.
 7

 D.
 8

Answer.....

Section B (32 marks)

Answer all questions

Question 2

Find the value of x, y, z in the matrices, $\begin{bmatrix} 1 & 2 & 3 & 0 \\ -1 & x & 4 & 1 \end{bmatrix} \begin{bmatrix} y & 3 \\ 1 & 2 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & z \\ -2 & 7 \end{bmatrix}$. [3]

Question 3 Kinley invested Nu 25000 in RICBL shares with a face value of Nu 100 and sold at par. a. How many shares can he buy?

b.	If a dividend of 15% is paid, find the annual divide	nd earned by him. [1]]

c. What will be the yield percentage on his investment? [1¹/₂]

Question 4

Solve the system of linear equations given below.

a. y = 4x - 1 and 2x + 3y = 11

[2]

BCSE/Maths/2008

Question 5

on 5 a. Sketch the graph of the inequality 3x-4y < 12 (use graph r given below)

ii. 992 to 1 significant figure

Question 7

Show that f(x) and g(x) are equivalent, where $f(x) = 3x^2 - 5x - 28$ and g(x) = (3x+7)(x-4)respectively. [3]

[11/2]

Question 8 Create an equation with the solution, x = 2 and x = 3.

Question 9

The data below shows the ages of the siblings of students in Pemba's class.

6	9	13	18	21	14	26	30	24
26	11	7	14	16	10	23	26	20
10	17	21	22	24	24	14	22	5
26	12	23	21	20	17	18	11	9

a. Construct a Stem and Leaf plot of the data.

1.	Use the date to find the median and the mede	F11/_1
D.	Use the data to find the median and the mode.	[172]

Question 10

Wangmo randomly chooses an integer from 1 to 50.

	Even Even	t A: t B:	The integer is even. The integer is a multiple of 4.	
a.	What i.	t is the p Event	probability of each of the following? t A happening?	[1]
	ii.	Event	B happening?	[1]
	iii.	Event	t A and B both happening?	[1]

Question 11 Find the values of x and y for the triangle given below.

[2]

Question 12

A ladder leaning against a wall forms a 30° angle with the wall at the top of the ladder. If the ladder reaches 3.5 metres up the wall, how long is the ladder.

Question 13

Using deductive reasoning prove that $\angle A = \angle D$ in the following triangles. [2]

SECTION C $(8 \times 6 = 48 \text{ marks})$

StudentBounty.com Under this section, there are 8 questions (question numbers 14 -21). Each question has two pairs I and II. Attempt either I or II from each question.

Question 14 (I) If $A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then find (i) 2A + 3B, (ii) A(B+C). a.

i. Make an adjacency matrix for the digraph above. [1]

[3]

Make use of your adjacency matrix to find out the number of one-stop over trips between ii. each pair of vertices. [2]

Question 14 (II)

a. The coordinates of the three vertices of a triangle are listed in the matrix given below. [3]

$$T = \begin{bmatrix} 4 & 8 & -1 \\ 0 & 3 & 2 \end{bmatrix}$$

i. Plot the points on the grid.

iii. Plot the new coordinates on the same grid.

- b. i. Make a digraph for this adjacency matrix.
 - $\begin{array}{cccc} A & B & C \\ A & \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ C & 0 & 2 & 1 \end{bmatrix}$

ii. Use the adjacency matrix to find out the two-stop over trips between A to C. [2]

Question 15 (I)

a. Pema is a sales person at a garment store. He is paid Nu 1500 each month plus an additional 5% commission on his sales amount. His goal is to earn a minimum of Nu 7500 each month. What should be the minimum amount of monthly sales he should make? [3]

ii. Solve for x,
$$\frac{5\sqrt{27} - 3\sqrt{12}}{\sqrt{x}} = \sqrt{3}$$
. [11/2]

OR

Question 15 (II)

 a. Ugyen borrowed Nu 30,000 at a certain rate of interest compounded quarterly. The balance was Nu 27,900 after making his first repayment of Nu 3000. What was the rate of interest? [3]

b. i. Simplify, $\frac{\sqrt{32} + \sqrt{50} - \sqrt{8} - \sqrt{72}}{\sqrt{2}}$.

ii. Solve for x, $(\sqrt{x} + \sqrt{22})(\sqrt{x} - \sqrt{22}) = 35$.

[11/2]

Question 16 (I)

- StudentBounty.com Dorji invests some amount earning at 5.2% interest and some amount earning at 5. a. interest.
 - i. Write an equation to describe the total interest.

i. Write a function that calculates the amount invested at 5.5% if you know the amount at 5.2%. [11/2]

The perimeter of a rectangle is 148 cm. The length is 12 cm greater than the width. b. What are the length and the width? [3]

b. Write an inequality to the graph given below:

[3]

- ii. Which triangle is more efficient?
- b. Two cylinders are of equal volume of 785cm³. The diameters of their bases are 10 cm and 12 cm respectively. Find the heights of the two cylinders and determine which is more efficient. [3]

[1]

;;	Which of the two share	as is more afficient?	Why?	[1]
п.	which of the two shap	es is more efficient?	wily?	

b. i. What is the total surface area of a cube with an edge length of 3.5 cm? [1]

ii. Determine the radius of a sphere with the same surface area as that of the cube above. [2]

BCSE/Maths/2008

OR

Question 18 (II)

ii.

Solve |3x+1| + 4 = 10

a. The hypotenuse of a right triangle is 18 units longer than its base. The height is 3 units longer than the 3 times the base. How long is the hypotenuse? [4]

Solve the quadratic equation, $4x^2 - 17x = 15$ b. [2]

Question 19 (I)

Use the stem and Leaf plot given below to answer the questions that follow. Vehicle speed on Japanese highways (Km/hr) [3] a. STEM LEAF 2 8 8 5 5 8 7 8 0 2 6 8 6 6 8 2 3 4 5 7 9 2 8 9 1 8 8 9 6 2 2 4 7 10 0 8

8

9

i. How many vehicles had their speeds measured?

1

1

BCSE/Maths/2008

Page 22 of 30

- How many vehicles were travelling under 90 Km per hour? ii.
- StudentBounts.com If the maximum speed limit was 90 Km/hr, how many vehicles were exceeding iii. the limit?
- What is the range of speed? iv.
- What is the median speed? v.
- The table below shows the age of some people and the number of hours they spend b. in physical activity each week. [3]

Age	20	22	30	30	34	26	26	18	36	36	28	30	40	35
Hours	15	11	6	7	6	14	8.5	16	3	6	11	9	3	4

i. Create a scatter plot of the data.

					1		1																
													 	 _									
																					-		
		-											 	 			 	_	 				
\vdash		_		-				-					 										
		_																_					_
		_																					
		_		<u> </u>									 										
						-																	\square
																							-
\vdash																							
\vdash		_		-	-	-	-	-	 -	-		-		 	-			_					
		_		-				-						 				_					+
	_	-		-										_				_			_	_	_
\vdash		_				-	-											_					
\vdash		_			-	-	<u> </u>											_				_	

ii. What type of correlation is shown?

iii. Estimate the value of the correlation coefficient.

OR

Question 19 (II)

studentBounts.com A manufacturer of batteries for lap top computers tested a sample of lap tops to see a. how long the charges in the batteries would last. Here are the results of the test. [3]

Battery life (in minute)	Frequency
260-270	2
270-280	3
280-290	5
290-300	7
300-310	5
310-320	4

Create a histogram and a frequency polygon i.

What is the distribution from the shape of the frequency polygon? ii.

- ii. Which scatter plot shows negative correlation?
- iii. Which scatter plot shows no correlation?
- iv. Which scatter plot shows a weak negative correlation?
- v. Which scatter plot shows strong positive correlation?

[3]

Question 20 (I)

StudentBounty.com From the top of a cliff, the angle of depression towards a car is 30° . If the cliff is 60 metres high, how far is the car from the base of the cliff? [4] a.

What is the value of x? b.

ii. Represent the trip from A to D by a single vector, and find its bearing and distance.

ii. What would be its Cosine and Cotangent values? [1]

[2]

Question 21 (I)

on 21 (I) Draw a triangle, and construct two circles in such way that one of the circles touchevertices and the other circle touches all its edges. a.

b. How many planes of symmetry does a regular pentagon based prism have? How many such planes of symmetry would a sphere have? [3]

OR

Question 21 (I) Draw any triangle, and construct its centroid. a.

Which has got more axes of rotation, a sphere or a cylinder? [11/2] b. i. How many lines of symmetry does a circle have? iii. [11/2]

[3]

For Rough Work

For Rough Work