Surname		Other nam	es
Pearson BTEC evel 3 Extended Certificate	Centre Number	Learner R	egistration Number
App	lied Scie	nce	
	Science Investiga		Part B
Unit 3: S	Science Investiga		Part B Paper Reference 31619H

Instructions

- You will need your results/observations from the practical investigation in **Part A**.
- Part B contains material for the completion of the set task under supervised conditions.
- Part B must be undertaken in a single session of 1 hour and 30 minutes on the date timetabled by Pearson.
- Part B is specific to each series and this material must only be issued to learners who have been entered to undertake the task in the relevant series.
- Part B should be kept securely until the start of the 1 hour and 30 minute supervised assessment period.
- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and learner registration number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Pearson

Turn over ▶

P53983A
©2018 Pearson Education Ltd.

1/1/1/1/1/1/1

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Answer ALL questions in Section 1 and Section 2.

Write your answers in the spaces provided.

SECTION 1

(a) Record all your experimental results, including average mass of extracted apple juice, in a suitable table, using the space provided. Circle any anomalous results.

(3)

2

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Plot a line graph of average mass of extracted apple juice against pectinase concentration.

(3)

DO NOT WRITE IN THIS AREA

(c) (i) Describe, using information from your graph, how the change in the concentration of pectinase affected the mass of extracted apple juice.	(2)
(ii) Identify, using information from your graph, the optimum concentration of pectinase for extracting apple juice.	
	(1)
%	
(iii) Give one reason why the pectinase concentration you identified in (c)(ii) is the optimum.	
	(1)
(d) Give one reason why it was important to stir the pureed apple and pectinase	
solution.	(1)

DO NOT WRITE IN THIS AREA

m	easured accurately.	(3)
f) Te	emperature was one of the variables controlled in your investigation.	
	ne rate of enzyme activity is affected by temperature. Pectinase has an optimum mperature at which it works best.	
(i)	Explain how a temperature below the optimum would affect the rate of	
	pectinase activity.	(2)
(ii	Explain how a temperature above the optimum would affect the rate of	
•	pectinase activity.	(2)
		(2)
•••••		
	(Total for Question 1 = 18 ma	rks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2	(a) Your colleague carried out a similar investigation. They extracted juice from two different types of apple: Jazz and Gala.	
	(i) State a null hypothesis for your colleague's investigation.	(2)

(ii) The table shows the mass of apple juice extracted from the Jazz and Gala apples.

Even a view a manufactura manu	Mass of juice extracted (g)		
Experimental repeats	Jazz apples	Gala apples	
1	102.0	141.0	
2	95.0	160.0	
3	134.0	155.0	
4	115.0	130.0	
5	97.0	120.0	
6	132.0	191.0	
7	119.0	154.0	
8	107.0	203.0	
9	126.0	170.0	
10	111.0	176.0	
Mean mass of juice extracted (g)	113.8	160.0	
Standard deviation (s)	13.93	26.00	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Calculate, using the unpaired *t*- test, the value of *t* for your colleague's investigation.

(6)

Use the equation.

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Show your working.

t =

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iii) Calculate the degrees of freedom for your colleague's investigation.

(2)

Use the equation $(n_1 + n_2) - 2$ Show your working.

degrees of freedom =

(iv) Give the critical value of t at the p = 0.05 level.

(1)

Use the *t* table shown.

		p = 0.05
	16	2.120
Ε	17	2.110
opaa.	18	2.101
s of fr	19	2.093
degrees of freedom	20	2.086
	21	2.080
	22	2.074
	22	2.074

t table

critical value of *t* =

DO NOT WRITE IN THIS AREA

(v) Explain whether the	e null hypothesis sho	uld be accepted o	or rejected.	(3)
		/Total	for Organian 2 —	14 montes
		(Total	for Question 2 = '	14 marks)

DO NOT WRITE IN THIS AREA

3	(a)	(i)	The ripeness of the apples used in your investigation was a variable that could not be controlled.	
			Explain why the differences in ripeness did not affect your results.	(2)
		(ii)	Identify two other variables in your investigation that could not be controlled.	
1				(2)
2				
	(b)		plain two ways you could extend your investigation to provide a more accurate lue for the optimum concentration of pectinase.	
				(4)
_			(Total for Question 3 = 8 ma	rks)
			TOTAL FOR SECTION 1 = 40 MAI	RKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

DO NOT WRITE IN THIS AREA

(12)

DO NOT WRITE IN THIS AREA

SECTION 2

4 Variation in resistance with light brightness

The brightness of a lamp can be altered by changing the power supplied to it.

The resistance of a light-dependent resistor (LDR) changes with the brightness of the light falling on the LDR.

The images show an LDR and the circuit symbol used to represent it.

LDR

Circuit symbol for the LDR

You have been asked to write a plan for an investigation to find out how the power supplied to the lamp in circuit A is related to the resistance of the LDR in circuit B.

Changing the brightness of light produced by the lamp in circuit A can change the resistance of the LDR in circuit B.

Your plan should include the following details:

- a hypothesis
- selection and justification of equipment, techniques or standard procedures
- health and safety associated with the investigation
- methods for data collection and analysis to test the hypothesis:
 - quantities to be measured
 - the number and range of measurements to be taken
 - how equipment may be used
 - control variables
 - brief method for data collection analysis.

You may include in your plan the use of any standard laboratory apparatus, electrical components or electrical meters.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 4 = 12 marks)
· · · · · · · · · · · · · · · · · · ·

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

5 Conducting putty is a material that will conduct an electric current.

The conducting putty can be cut to any length.

The image shows a roll of conducting putty with connections to a circuit.

A learner sets up the circuit shown to investigate how the current in the conducting putty varies as its length changes.

Here is the method the learner used.

- measure the length of the conducting putty cylinder
- connect the conducting putty cylinder to the circuit
- measure the current
- cut the conducting putty to a new length
- measure the current for each new length of conducting putty.

The graph shows the results of the learner's investigation.

The learner concludes that:

'The current passing through the conducting putty cylinder decreases as the length of the cylinder decreases'.

Evaluate the learner's investigation.

Your answer should include reference to the:

- method of the experiment
- · results collected
- · conclusion made.

(8)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

· ·

