Mark Scheme

January 2018

Pearson BTEC Level 3 – Applied Science

Unit 3: Science Investigation Skills

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Publications Code xxxxxxxx*

All the material in this publication is copyright
© Pearson Education Ltd 2018

Unit 3: Science Investigation Skills – sample marking grid

General marking guidance

- All learners must receive the same treatment. Examiners must mark the first learner in exactly the same way as they mark the last.
- Marking grids should be applied positively. Learners must be rewarded for what they have shown they can do, rather than be penalised for omissions.
- Examiners should mark according to the marking grid, not according to their perception of where the grade boundaries may lie.
- All marks on the marking grid should be used appropriately.
- All the marks on the marking grid are designed to be awarded. Examiners should always award full marks if deserved. Examiners should also be prepared to award zero marks, if the learner's response is not rewardable according to the marking grid.
- Where judgement is required, a marking grid will provide the principles by which marks will be awarded.
- When examiners are in doubt regarding the application of the marking grid to a learner's response, a senior examiner should be consulted.

Specific marking guidance

The marking grids have been designed to assess learner work holistically.

Rows in the grids identify the assessment focus/outcome being targeted. When using a marking grid, the 'best fit' approach should be used.

- Examiners should first make a holistic judgement on which band most closely matches the learner's response and place it within that band. Learners will be placed in the band that best describes their answer.
- The mark awarded within the band will be decided based on the quality of the answer, in response to the assessment focus/outcome and will be modified according to how securely all bullet points are displayed at that band.
- Marks will be awarded towards the top or bottom of that band, depending on how they have evidenced each of the descriptor bullet points.

Question number	Correct Answer	Additional guidance	Mark
1a	suitable headings with units (1)	allow M/m/molar/moles/mol/mdm ⁻³ for concentration allow seconds/sec/s/minutes/min/m/for time	(3)
	measurements consistently recorded to the same precision (1)		
	three or more repeats (1)		

1 (b)	An explanation that makes reference to two linked pairs from	do not allow answers that relate to controls ignore same equipment	(4)
	white {tile/paper} (1)		
	to see colour change/end point (1)		
	OR		
	(used a) stopwatch/stop clock/timer (1)	allow any appropriate small	
	to give results to milliseconds (1)	allow any appropriate small increment	
	OR		
	read from bottom of meniscus (1)		
	to get the true/exact value of the volume of acid (1)		
	OR		
	eye level (1)		
	to get the true/exact value of the volume of acid (1)		
	OR		
	time taken in seconds not minutes (1) to give a true/exact value for time of diffusion (1)		
	OR		
	use {clean/washed/new} equipment for each test (1)		
	so there is no contamination (1)		
	OR		
	keep agar in container / keep lid on agar (1)		
	to prevent {early reactions/colour change} with (carbon dioxide in the air) (1)		

1(c)	all 5 substituted correctly (1)		(2)
	3 or 4 evaluated correctly (1)	allow different numbers of sig figs	
1 (d)	labels and units for axes (1)	maximum 2 marks if time, rather than rate has been plotted – do not award label mark point	(3)
		allow reversed axes	
	suitable scales (1)	spread of plots covers half of graph paper	
	all points plotted correctly and suitable line of best fit for learner's	+/- 1 small square	
	data (1)	do not allow tramlines	
1 (e)		Answer consistent with result from graph or table	(2)
	as concentration increased rate of diffusion increased (1)	allow positive/negative correlation	
	comment on the proportionality/gradient relationship between concentration and rate of diffusion (1)	allow correct comment regarding levelling off of data	
		Total marks	(14)

Question number	Correct Answer	Additional guidance	Mark
2 (a)	any number between 0.0016 and 0.0047		(1)
2(bi)	Mean calculated correctly 0.0085 (s ⁻¹)	allow 8.5 x 10 ⁻³	(1)

a/1\	I= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		/- \
2(bii)	For each number subtract the	0.0084-0.0085 = (-)0.0001	(5)
	mean (1) and square the result (1)	-0.0001 ² = 0.00000001	
		0.0083-0.0085 = (-)0.0002	
		$-0.0002^2 = 0.00000004$	
		0.0088-0.0085 = 0.0003	
		$0.0003^2 = 0.00000009$	
		0.0000	
	Add up these values (1) and	0.00000001+0.00000004+0.00000009	
	1	-	
	divide by one less than the	(3-1)	
	sample number (1)	= 0.00000007	
	Square root this number to get	√0.00000007 = 0.00026458	
	the standard deviation (1)		
		Allow any stage/answer in standard	
		form	
		2.6 x 10 ⁻⁴	
		or	
		0.00026	
		3.333_3	
		allow ECF at any stage	
		anow Let at any stage	
		and the second of the second s	
		correct answer on answer line	
		scores 5 marks	

2 (ci)	Any three from: (same/different) shape/ {size/surface area/volume } cylinder (1) (same/different) {density/type} of agar (1) (same/different) amount of {sodium hydroxide/phenolphthalein} in cylinder (1) (same/different) concentration of sodium hydroxide in cylinder (1) (same/different) type of alkali (1) (same/different) temperature (1) (same/different) type of indicator (1) same concentrations of acid 0.1-2M (1)	accept any suitable reasons based on own results ignore type of acid allow different sized cork borer	(3)
	range of concentrations used (1) different pH of {acid/alkali} (1)	ignore volume	
2 (cii)	An explanation that makes reference to the following points: (2.5M sulfuric) acid is very concentrated / high in concentration (1)	allow contains more molecules/particles of acid allow more corrosive	
	{dissolves/reacts/corrodes/dehydrates} the agar cylinder (1)		

2(d)	An explanation that makes reference to two linked pairs from no evidence for concentrations above 2.5M in (either set of) results (1) so cannot say for certain (1) OR uses data to show that rate increases as concentration increases e.g at 0.1 is it 0.0003 but at 2.0 it is 0.0072 (1) so no reason for pattern not to continue (1) OR agar {shrinks/dissolves/reacts/corrodes} at 2.5m (1) pattern might not continue / cannot say for certain (1)	allow rates of diffusion might plateau	4
		Total	16 marks

Q	Correct Answer	Additional guidance	Mark
3 (a)	An explanation that makes reference to two linked	ignore temperature	(4)
	pairs from	ignore concentration of acid	
	surface area of the cylinder (1)		
	by using same {size/shape/volume} cylinder/cut with the same size cork borer (1)	allow length/width/diameter for size	
	OR		
	the concentration of the sodium hydroxide (1)		
	by using {clean/fresh/washed} equipment for each test		
	OR		
	ensure all agar is covered by the same amount (1)		
	by keeping the size of {boiling tube/ test tube} the same (1)		
	OR		
	same volume of acid (1)	allow amount for volume	
	by using 10ml/use a measuring cylinder /pipette (1)		
	OR		
	same type of agar (1)		
	by using same batch of agar (1)		
	OR		
	same concentration of the {phenolphthalein /indicator/sodium hydroxide} in the agar (1)		
	by using same batch/bottle (1)		
	OR		
	temperature (1)		
	by using a water-bath (1)		
		ignore staying in the same laboratory	

3 (b)	An explanation that makes reference to any two the following points:		(2)
	higher temperature provides more energy (to acid particles) (1)	allow ORA	
	so acid particles will move faster (1)		
	more collisions (in a given time) (1)		
	{diffusion/reaction} will happen faster	allow average rate is faster	
3 (c)	An explanation that makes reference to two linked pairs from	ignore large range of concentrations	(4)
	repeat the experiment for different acid/alkalis (1)		
	e.g use nitric acid (1)	allow any named acid	
	OR		
	use different substrate (1)		
	e.g gelatin (1)	allow other named substance	
	OR	anon other names susstance	
	use different {shape/size/volume of} agar (1)		
	e.g use a different size cork borer/cube (1)	allow any shape given	
	OR	anow any snape given	
	use different temperatures (1)		
	e.g use an ice bath/waterbath to cool/ warm acid (1)		
	OR	allow any temperatures stated	
	use different volumes of acid (1)		
	e.g. 20ml and 25ml (1)		
		allow any stated volumes	
		Total marks	10

A plan that makes reference to:	Question	Indicative content
 a hypothesis equipment techniques and /or procedures risks control variables dependent variables – how it will be measured, units and the precision of measurements to be taken independent variable – the range of measurements/categories to be used and how they will be measured, the intervals to take measurements 	number	
 equipment techniques and /or procedures risks control variables dependent variables – how it will be measured, units and the precision of measurements to be taken independent variable – the range of measurements/categories to be used and how they will be measured, the intervals to take measurements 	4	A plan that makes reference to:
 risks control variables dependent variables – how it will be measured, units and the precision of measurements to be taken independent variable – the range of measurements/categories to be used and how they will be measured, the intervals to take measurements 		a hypothesis
 control variables dependent variables – how it will be measured, units and the precision of measurements to be taken independent variable – the range of measurements/categories to be used and how they will be measured, the intervals to take measurements 		equipment techniques and /or procedures
 dependent variables – how it will be measured, units and the precision of measurements to be taken independent variable – the range of measurements/categories to be used and how they will be measured, the intervals to take measurements 		• risks
 measurements to be taken independent variable – the range of measurements/categories to be used and how they will be measured, the intervals to take measurements 		control variables
and how they will be measured, the intervals to take measurements		·
• data analysis.		and how they will be measured, the intervals to take measurements
Mark scheme (Award up to 12 marks) Refer to the general marking guidance	Mark sch	,

found in this document on how to apply levels- based mark schemes*.

Level	Mark	Descriptor
		·
Level 0	0	No awardable content
Level 1	1-3	 Limited attempt at a hypothesis is made Demonstrates limited knowledge and understanding of scientific concepts, procedures, processes and techniques with a basic description of the plan to investigate the scientific scenario given Provides a rationale for the method suggested and generic statements may be presented rather than linkages being made so that lines of scientific reasoning are unsupported or unclear The plan will not be logically ordered with significant gaps that will not lead to reliable results being collected
Level 2	4-6	 An explanation for the hypothesis is given that is partially supported by scientific understanding Demonstrates adequate knowledge and understanding of scientific concepts, procedures, processes and techniques with a partial description of the plan to investigate the scientific scenario given Provides a rationale for the method, which has occasional linkages present so that lines of scientific reasoning are partially supported The plan will generally be in a logical sequence and will yield some results
Level 3	7-9	 An explanation for the hypothesis is given that is supported by scientific understanding Demonstrates good knowledge and understanding of scientific concepts, procedures, processes and techniques with a clear description of the plan to investigate the scientific scenario given Provides a rationale for the method, which has linkages present so that lines of scientific reasoning are supported The plan will be in a logical sequence but with minor omissions of steps and will yield reliable results
Level 4	10-12	 An explanation for the hypothesis is given thatis fully supported by scientific understanding Demonstrates comprehensive knowledge and understanding of scientific concepts, procedures, processes and techniques with a step-by-step description of the plan to investigate the scientific scenario given

	•	Provides a rationale for the method, which has consistent linkages present so that lines of scientific reasoning are fully supported The plan will be in a logical sequence and will lead to a reliable set of results being collected
Total marks	12	

Potential learner hypothesis

'the diode will not conduct at all in one direction regardless of what potential difference is applied and in the other direction it will conduct but only after the potential difference rises above a certain value'

Question	Indicative content		
number			
5	An evaluation that makes reference to:		
	Method		
	 ensure the same starting temperature for the water 		
	 ensure the volume of water remains constant for each power value 		
	 heat the water for the same amount of time 		
	 identify a means of controlling the current and/or the potential difference 		
	 a reference to the beaker not being insulated so there is considerable heat loss 		
	 identifying a means of measuring the power, e.g. using an ammeter to 		
	measure the current and a voltmeter to measure the potential difference across the resistor		
	mechanisms of heat loss should be considered when deciding on the type of		
	insulation to be used		
	water is not stirred		
	Results		
	no repeat readings are taken		
	smaller intervals should be used		
	 the range of results could be increased 		
	increase the number of data points		
	Conclusion		
	 above 36W the temperature change is no longer linear, more measurements of temperature are needed from 36W to 48W to see if this is a trend or an 		
	anomaly		
	 a graph can be drawn of the power supplied against the rise in temperature to identify the trend more clearly, more data points would help confirm this 		
	the data supports the conclusion		
	use of quantitative values		
	 the evidence to support the conclusion is weak because there is only one set of data/no repeats 		

Mark scheme (Award up to 8 marks) Refer to the general marking guidance found in this document on how to apply levels- based mark schemes*.

Level	Mark	Descriptor
	0	No awardable content
Level 1	1-2	 Adequate interpretation and analysis of the scientific information Generic evaluative comments made with little linkage to supporting evidence/reference to context A conclusion may be presented, but will lack focus and be superficial and underdeveloped
Level 2	3-5	 Good analysis and interpretation of the scientific information Evaluative comments with supporting evidence/reference to context and a partially developed chain of reasoning Conclusion will be mostly focused and developed and draw on some of the information presented before
Level 3	6-8	Comprehensive analysis and interpretation of all pieces of scientific information

	 Evaluative comments supported by relevant reasoning and appropriate reference to context Conclusion will be clear and concise and well-developed drawing upon the most relevant information presented before
·	Total marks 8

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

