

L3 Lead Examiner
Report 2001

January 2020

L3 Qualification in Computing
Unit 4: Software Design and
Development Project

2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning
company. We provide a wide range of qualifications including academic, vocational,
occupational and specific programmes for employers. For further information visit our
qualifications website at http://qualifications.pearson.com/en/home.html for our BTEC
qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at
http://qualifications.pearson.com/en/contact-us.html

If you have any subject specific questions about this specification that require the help
of a subject specialist, you can speak directly to the subject team at Pearson. Their
contact details can be found on this link:
http://qualifications.pearson.com/en/support/support-for-you/teachers.html

You can also use our online Ask the Expert service at https://www.edexcelonline.com

You will need an Edexcel Online username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in
every kind of learning, for all kinds of people, wherever they are in the world. We’ve
been involved in education for over 150 years, and by working across 70 countries, in
100 languages, we have built an international reputation for our commitment to high
standards and raising achievement through innovation in education. Find out more
about how we can help you and your learners at: www.pearson.com/uk

January 2020
31771_2001_ER
All the material in this publication is copyright
© Pearson Education Ltd 2019

http://qualifications.pearson.com/en/home.html
http://qualifications.pearson.com/en/contact-us.html
http://qualifications.pearson.com/en/support/support-for-you/teachers.html
https://www.edexcelonline.com/
http://www.pearson.com/uk

3

Grade Boundaries

What is a grade boundary?

A grade boundary is where we set the level of achievement required to obtain a certain
grade for the externally assessed unit. We set grade boundaries for each grade, at
Distinction, Merit and Pass.

Setting grade boundaries

When we set grade boundaries, we look at the performance of every learner who took
the external assessment. When we can see the full picture of performance, our experts
are then able to decide where best to place the grade boundaries – this means that
they decide what the lowest possible mark is for a particular grade.

When our experts set the grade boundaries, they make sure that learners receive
grades which reflect their ability. Awarding grade boundaries is conducted to ensure
learners achieve the grade they deserve to achieve, irrespective of variation in the
external assessment.

Variations in external assessments

Each external assessment we set asks different questions and may assess different
parts of the unit content outlined in the specification. It would be unfair to learners if
we set the same grade boundaries for each assessment, because then it would not take
accessibility into account.

Grade boundaries for this, and all other papers, are on the website via this link:

http://qualifications.pearson.com/en/support/support-topics/results-
certification/grade-boundaries.html

Unit 4: Software Design and Development Project

Grade Unclassified N grade
Level 3

Pass Merit Distinction

Boundary
Mark 0 10 21 35 50

http://qualifications.pearson.com/en/support/support-topics/results-certification/grade-boundaries.html
http://qualifications.pearson.com/en/support/support-topics/results-certification/grade-boundaries.html

4

Introduction

This was the fourth examination series for Level 3 BTEC Computing Unit 4: Software
Design and Development Project.
This unit is a paper-based exam, assessed through a task-based assessment. The set
task assesses learners’ ability to design, create and evaluate software using Python
(3.4 or a later version) or one of the C family programming languages. This unit is a
mandatory unit for all learners studying the extended diploma.

The examination for this unit will always contain five activities and each one will be
linked to a scenario. The scenario is clearly stated at the beginning of each
assessment. The activities will test learners on different areas of the specification, and
learners are expected to apply their knowledge to the scenario.

All Activities of the examination paper provide differentiation at all attainment levels
and the brief is designed to escalate in difficulty so that a larger percentage of higher-
grade marks depends on the skills, knowledge, understanding and application of
theory.

5

Introduction to the Overall Performance of the Unit

The overall performance of learners was not as good compared to the previous series
for this unit. It was evident that some learners were not well prepared for the rigour
of this assessment.

The performance on Activity 1 was as expected with many learners picking up marks
in band 2. Most of the responses used BCS symbols and had a good go at breaking
down the requirements into relevant parts. Learners provided evidence of links
between component parts but little evidence of handling errors within the flowcharts.

Activity 2 was of a good standard and demonstrated the learner ability to apply
pseudocode design methodologies to a scenario. Learners have taken on board
previous comments regarding this activity and the number of pseudocode being too
close to the coding was much less compared to January and June 2019.

Activity 3 & 4 (testing) was poor again this series and resulted in most learners only
accessing band 1. It is recommended that centres reinforce what a test plan consists
of and the importance of testing throughout the whole design and development
process. Some test plans seen did not include any test data which meant no marks
could be awarded. In most cases, the testing carried out did not evidence any errors
encountered which is essential for accessing higher marks.

Activity 4 (Coding) was not done to a good standard by a lot of the learners. Some
were awarded marks in the top mark band as they produced a working solution along
with detailed comments, but most learners produced code that was mark band 2
standard at best. Some learners had not been fully prepared for coding in any
programming language and only managed to produce a solution that accepted inputs.

The evaluations (activity 5) were of a good standard and most learner’s accessed
bands two and three. Some learners only produced a review of what they did which
resulted in marks from band 1 being awarded.

6

Individual Questions

The following section considers each question on the paper, providing examples of
learner responses and a brief commentary of why the responses gained the marks
they did. This section should be considered with the live external assessment and the
corresponding mark scheme.

7

Activity 1

8

The learner has produced a flow chart that addresses the specified problem.

British Computer Society (BCS) flowchart symbols have been used accurately
throughout as well as the breaking down of requirements into component parts that
are detailed and relevant.

The flowchart shows full coverage of inputs, outputs and processes using naming
conventions appropriate to the scenario consistently. Links between component
parts are complete and efficient with accurate and robust procedures for handling
unexpected events. Band 3 (10 marks).

9

10

The learner has addressed some aspects of the flow chart for the specified problem.
British Computer Society (BCS) flowchart symbols have been used but mostly
incorrect with irrelevant parts. There is some evidence of breaking down of
requirements into component parts that are relevant. Links between component
parts are incomplete with limited procedures for handling unexpected events.

Mark in band 1 (3 marks).

11

Activity 2

12

The learner has produced a structure which shows appropriate and consistent use of
hierarchy and indentation, providing clarity and mostly readable pseudocode. The
pseudocode will provide a working solution with some minor errors. Appropriate
naming conventions have been used and precise use of logical operations.

Mark in band 3 (8 marks).

13

14

The learner has produced a structure which shows some appropriate and consistent
use of hierarchy and indentation, providing some clarity and readable pseudocode.
However, the pseudocode will not provide a working solution as it is inefficient and
does not show any calculations.

Mark in band 1 (3 marks).

15

Activity 3
Test Plan

16

The learner has produced a thorough test plan to confirm a working solution which
includes a range of data. Expected results are specific and accurate based on
identified test data. Mark in band 3 (6 marks).

17

The learner has produced a test plan but has no actual test data. Expected
results are generic, no marks can be awarded for this test plan.

Mark in band 0 (0 marks).

18

Activity 4 – Program
using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Property_agency_commission_calculator

{

 class Program

 {

 static void Main(string[] args)

 {

 //Variables are declared, some are given a value as they are used in
statements before being given a value by the user.

 int employeesWorking = 0;

 double totalCommission = 0;

 int totalPropertiesSold = 0;

 double bonus;

 Console.WriteLine("Input the amount of employees working this week.
Number must be no smaller than 2 and no larger than 5.");

 //The while statement below makes it so the program will not continue
while the value of the variable "employeesWorking" is smaller than 2 or bigger
than 5.

 //This makes it so the user has to enter a value no smaller than 2 and no
bigger than 5 in order for the program to continue.

 while (employeesWorking < 2 || employeesWorking > 5)

 {

 //This try-catch statement makes it so if the user inputs invalid data (like
"3.5" or "$&^%6") the program handles the error that data gives.

19

 //This is because it cannot accept characters that are not numbers or
values that are decimals as the data type of the variable is integer.

 try

 {

 //The line of code below converts the string input of the user into an
integer so it can be compared to other integers and added up and multiplied by
later on in the program.

 //This line of code can create the error talked about above, however as
it is in a try catch statement that error is handled.

 employeesWorking = Convert.ToInt32(Console.ReadLine());

 if (employeesWorking < 2 || employeesWorking > 5)

 {

 Console.WriteLine("Invalid amount of employees. Please try again.");

 }

 }

 catch

 {

 Console.WriteLine("Invalid amount of employees. Please try again.");

 }

 }

 //The lines of code below create all the arrays used to store employee
details.

 //I used multiple 1D arrays as they are easier to sort. I felt they were more
suitable for this program.

 string[] employeeName = new string[employeesWorking];

 string[] employeeID = new string[employeesWorking];

 int[] employeeNumber = new int[employeesWorking];

 int[] propertiesSold = new int[employeesWorking];

 double[] salesCommission = new double[employeesWorking];

 //This for loop loops for the number of times that there are employees
working, allowing the user to input details for each employee.

20

 for (int i = 0; i < employeesWorking; i++)

 {

 //"i" is used a lot in this for loop. It is a integer variable that goes up by 1
each iteration.

 //It is often placed inside the square brackets of the arrays, as each
iteration is accesses a different place in each array.

 employeeNumber[i] = i;

 Console.WriteLine("");

 Console.WriteLine("Employee number " + (employeeNumber[i] + 1));

 Console.WriteLine("Input employee name: ");

 employeeName[i] = Console.ReadLine();

 Console.WriteLine("Input employee ID.");

 employeeID[i] = Console.ReadLine();

 Console.WriteLine("Input the number of properties sold for this
employee.");

 //propertiesSold[i] is set to -1 as it would by default be set to 0, therefore
the while loop would be skipped.

 propertiesSold[i] = -1;

 //This while loop loops until the user inputs a value greater or equal to 0.

 while (propertiesSold[i] < 0)

 {

 //Like the previous try catch statement, this is in place to handle the
errors caused by invalid data being entered.

 try

 {

 propertiesSold[i] = Convert.ToInt32(Console.ReadLine());

 if (propertiesSold[i] < 0)

 {

21

 Console.WriteLine("Invalid number of properties sold. Please try
again.");

 }

 }

 catch

 {

 Console.WriteLine("Invalid number of properties sold. Please try
again.");

 }

 }

 //The lines of code below:

 //Calculate the sales commission for each employee,

 //Add each employee's commission to the total commission,

 //Add each employee's number of properties sold to the total number of
properties sold.

 salesCommission[i] = propertiesSold[i] * 500;

 totalCommission += salesCommission[i];

 totalPropertiesSold += propertiesSold[i];

 }

 //These lines of code sort the number of properties sold from low to high,
as well as sorting the employee numbers array by that propertiesSold array.

 //This means the employeeNumber array now has the order (from low to
high) of each employee by the amount of properties they sold.

 //Both arrays are then reversed to order them both from high to low.

 Array.Sort(propertiesSold, employeeNumber);

 Array.Reverse(propertiesSold);

 Array.Reverse(employeeNumber);

 //The lines of code below calculate the bonus that the employee that sold
the most properties will receive.

22

 //It also adds the employee's bonus to the total commission and to their
own commission.

 bonus = salesCommission[employeeNumber[0]] * 0.15;

 totalCommission += bonus;

 salesCommission[employeeNumber[0]] += bonus;

 //In the lines below where currency is being displayed, I used
".ToString("c2")" to format the currency correctly. .ToString converts the variable
to a string.

 //"c2" converts the variable into a currency, adding a pound sign before
and displaying two decimal points as required.

 //This loop's purpose is to output the details of each employee, including
their ID, name, the number of properties they sold, and the sales commission
they will receive.

 for (int i = 0; i < employeesWorking; i++)

 {

 //For every iteration, the line below assigns the employee number for the
employees from the most properties sold to the lowest.

 //This is extremely useful as it means I can reference each employee's
details in order of the amount of properties sold descending without having to
sort the other arrays.

 int j = employeeNumber[i];

 Console.WriteLine("");

 Console.WriteLine("Employee ID: " + employeeID[j]);

 Console.WriteLine("Employee name: " + employeeName[j]);

 Console.WriteLine("Number of properties sold for employee: " +
propertiesSold[i]);

 //The line of code below

 Console.WriteLine("Sales commission for employee: " +
salesCommission[j].ToString("c2"), 2);

 }

23

 //The lines of code below display the total commission for the week, and
the total sales for the week.

 //Also, the bottom line displays the name, amount of properties they sold,
and they bonus they received, of the employee that sold the most properties.

 Console.WriteLine("Total sales commission for week: " +
totalCommission.ToString("c2"));

 Console.WriteLine("Total sales for week: " + totalPropertiesSold);

 //Below you can see employeeNumber[0] being used inside the square
brackets of the employeeName array and propertiesSold[0] being used.

 //"employeeNumber[0]" references the position in the employeeName
array of the employee that has sold the most properties.

 //"propertiesSold[0]" references the amount of properties the user that has
sold the most amount of properties has sold.

 Console.WriteLine(employeeName[employeeNumber[0]] + " has sold the
most properties at " + propertiesSold[0] + " properties. A bonus of " +
bonus.ToString("c2") + " has been applied.");

 Console.WriteLine("");

 //The line of code below prompts the user that they can press enter to exit
the program.

 Console.WriteLine("Press enter to exit this program.");

 //If the user presses enter, the line of code below makes it so that the
program will end, as it tries to go onto the next line of code, realises there is no
more code, and therefore terminates the program.

 Console.ReadLine();

 }

 }

}

The learner has produced a program that fully meets all the requirements. Accurate
syntax and indentation have been used throughout the code and commenting is
consistently clear and informative. Program outputs are accurate and informative,
validation and other checks have been used which are all accurate, resulting in a
robust program being created.

Mark in band 4 (24 marks).

24

print("Welcome to commission calculator version 1.0 ")

print("")

#This is the commission earned by an employee for each property sold.

propComm = int(500)

#This is the field in which employee information will be stored

employees = []

#This is the field in which the total properties sold will be stored

totalProp = int()

variables:

empNum - number of employees working this week

empID - individual employee ID number

empName - individual employee name

propSold - number of properties sold by employee

totalComm - total commission paid out

empComm - commission earned per employee

empRank - employee's rank by properties sold

def week_num():

 weekNum = int(input("please enter week number: "))

 print("")

 if (weekNum >= 1) and (weekNum <=52):

 print ("week selected")

 print ("")

 else:

 print ("Please select a valid week number")

 print("")

25

 week_num()

week_num()

def main():

 totalProp = 0

 empNum = int(input("Please enter number of employees working this week: "))

 print("")

 if (empNum >= 2):

 print("Number of employees selected")

 print("")

 elif (empNum <2) or (empNum >5):

 print ("Please enter a valid number of employees")

 print("")

#~~~ add loop to above function so that an invalid week number loops back to
beginning ~~~

 for i in range(0,empNum):

 empID = str(input("Employee ID: "))

 empName = str(input("Employee Name: "))

 propSold = int(input("Properties Sold: "))

 commPaid = propComm * propSold

 employees.append([empID, empName, propSold, commPaid])

 empIndex = int()

 for row in employees:

 totalProp = totalProp + int(employees[empIndex][2])

 empIndex = empIndex + 1

main()

26

The learner has produced a program that meets some of the requirements. The
program accepts an input for week number, number of employees working, name, ID
and properties sold. Once these inputs have been entered the program ends. Some
validation has been used but not effectively. Outputs are accurate and mostly
informative. Some accurate syntax and indentation used along with some logical
structure. No error handling has been used. Commenting of the code has not been
done so this can only get a mark in mark band 1.

Mark in band 1 (6 marks).

27

Activity 4 – Testing

28

The learner has produced some evidence of an iterative development process that
identifies and resolves some basic errors. Comments show understanding of the
basic errors and how they were fixed.

Mark in band 2 (3 marks).

29

Document for Activities 3 and 4
Test Plan (add additional rows as required)

30

Testing shows evidence of a limited or linear development process, with minimal
identification and resolution of errors.

To get into mark band 2 there must be evidence of errors and how they have been
solved.

Mark in band 1 (2 marks).

31

Activity 5

32

The learner has demonstrated a mostly accurate and detailed understanding of
technical concepts. Valid and mostly supported justification of coding conventions
used, and the learner has made logical links between aspects of the solution and the
requirements of the scenario.

Valid and mostly supported judgements of the quality and performance of the
program. Accurate technical vocabulary used to support arguments.

Mark in band 3 (9 marks).

33

34

The learner has demonstrated superficial understanding of relevant technical
concepts. There is unsupported justification of changes made during the
development process and limited justification of coding conventions supported.
Limited judgements about the quality and performance of the program keeps this
evaluation in mark band 1 (3 marks).

35

Summary

Based on performance in this examination series, learners are offered the following
advice:

• Apply their knowledge to as many different scenarios as possible. The exam
paper will always contain 5 activities which always be the same just the scenario
would be different and therefore this will prepare learners to be able to provide
answers to the given context under exam conditions.

• Use standard naming conventions throughout the design process and clearly
demonstrate this in the flowchart and pseudocode.

• Pseudocode needs to be a detailed yet readable description of what a

computer program must do, expressed in a natural language rather than in a
programming language if top marks are to be achieved.

• Develop a better understanding of the testing process. Test plan must include

normal, abnormal and extreme data. Testing must address errors encountered
and how these were overcome. The testing must be iterative, document tests
when code is being developed as this will give a true reflection of the
development.

• Ensure the Program uses accurate validation and error checking procedures
throughout, resulting in a robust program that minimises errors and handles
unexpected events. This will enhance the completed solution and allow the
higher mark bands to be accessed. Programs must address most requirements
to gain higher marks.

• The evaluation needs to include a fully supported justification of changes

made during the development process, as well as a fully supported

justification of coding conventions selected if higher mark bands are to be

accessed.

36

For more information on Pearson qualifications, please visit
http://qualifications.pearson.com/en/home.html

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

http://qualifications.pearson.com/en/home.html

