

Mark Scheme (Results)

January 2019

BTEC Level 3 National in Applied Science Unit 5: Principles and Applications of Science II – Chemistry (31627H/1C)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019 Publications Code 31627H1C_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

Unit 5: Principles and Applications of Science II – sample marking grid

General marking guidance

- All learners must receive the same treatment. Examiners must mark the first learner in exactly the same way as they mark the last.
- Marking grids should be applied positively. Learners must be rewarded for what they have shown they can do, rather than be penalised for omissions.
- Examiners should mark according to the marking grid, not according to their perception of where the grade boundaries may lie.
- All marks on the marking grid should be used appropriately.
- All the marks on the marking grid are designed to be awarded. Examiners should always award full marks if deserved. Examiners should also be prepared to award zero marks, if the learner's response is not rewardable according to the marking grid.
- Where judgement is required, a marking grid will provide the principles by which marks will be awarded.
- When examiners are in doubt regarding the application of the marking grid to a learner's response, a senior examiner should be consulted.

Specific marking guidance

The marking grids have been designed to assess learner work holistically. Rows in the grids identify the assessment focus/outcome being targeted. When using a marking grid, the 'best fit' approach should be used.

- Examiners should first make a holistic judgement on which band most closely matches the learner's response and place it within that band. Learners will be placed in the band that best describes their answer.
- The mark awarded within the band will be decided based on the quality of the answer, in response to the assessment focus/outcome and will be modified according to how securely all bullet points are displayed at that band.
- Marks will be awarded towards the top or bottom of that band, depending on how they have evidenced each of the descriptor bullet points.

Question Number	Answer	Additional Guidance	Mark
1 (a)	D Al ₂ O ₃		1
1 (b)(i)	B Cryolite		1
1 (b)(ii)	Award one mark for reason and one additional mark for appropriate expansion.		2
	dissolving lowers the melting point (1)	Ignore reference to the solvent and aluminium	
	less energy is required (by the process) / more (energy) efficient / cost reduction (1)	Ignore ions can move / carry the electrical current	
	OR		
	melting point is high/over 2000°C (1)		
	requires a large amount of energy / more (energy) efficient / cost reduction (1)	Ignore speed / safety / environment	
1 (c)	$AI^{3+} + 3e^{-} \rightarrow AI$ (2) Or	Allow "3+" written besides Al, but reject subscripts	2
	MP1 – equation shows AI with positive charge <u>and</u> e (with negative charge) (1)	Allow e with no charge	
	MP2 – charge of 3+ on Al <u>and</u> 3 in front of e (1)	Max 1 mark if number of Al particles on LHS and RHS do not match	

Section B – Properties and uses of substances

1 (d)	oxygen (forms at positive electrode / anode) (1)	Ignore reference to type of oxygen particle Reject oxide	2
	(the electrode) {burns/decomposes/disintegrates/ erodes}/ forms carbon dioxide (1)	Allow reacts (with oxygen) Allow $C + O_2 \rightarrow$ CO_2 (2)	
		total	8 marks

Question Number	Answer	Additional Guidance	Mark
2 (a)	enthalpy $N_2(g) + 3H_2(g)$ progress of reaction	Curve must start at reactant level and finish on product level, maximum of curve must be lower than and within the uncatalysed curve	1
2 (b)	Identification point:		4
	speeds up the reaction / the rate of reaction increases (1)	Allow equilibrium reached quicker Ignore not used up or changes yield	
	Any three explanation points from the following:		
	the catalyst provides alternative pathway (of lower activation energy) (1)	Ignore lowering activation energy	
	provides a surface for the particles to react upon (1)	Allow adsorption / desorption of molecules on catalyst	
	bonds within the reactant particles are weakened (1)	,	
	so more particles have the necessary activation energy (1)		
	leading to more successful collisions / reactions per unit time (1)		
	the reaction can be performed at a lower temperature (1)		
	this requires less energy / is more efficient / is cheaper / is more sustainable (1)	Allow reduce energy use / save energy total	5 marks

Question Number	Answer	Additional Guidance	Mark
3 (a)	hydrogen is formed at the <u>cathode</u> / hydrogen ions go to the <u>cathode</u> (1)	Allow negative electrode	3
	chlorine is formed at the <u>anode</u> $/$ chloride ions go to the <u>anode</u> (1)	Allow positive electrode	
	sodium hydroxide is left behind / is in the {solution/water} / remains in the cell (1)	Allow sodium hydroxide at the cathode / cathode compartment	
		Ignore sodium hydroxide at the anode or at the membrane / diaphragm	
	Accept other valid description.		
3 (b)	The enthalpy change when 1 mole of ions in the gaseous / gas state are dissolved in water to infinite dilution under standard conditions (100 kPa and 298 K) (2)		2
	or gaseous / gas (1) 100 (1)		
3 (c)		Award all 3 marks for (+)4	3
	reverse sign of -760 in calculation (1)	Allow – –760 or (+)760	
	summation of -418 and -338 in calculation (1)		
	evaluation (1)	+760 - 418 - 338 (2)	
	(+)4	Allow 2 marks for -4	
		Allow 2 marks for (-)1516 (-) 840 (-) 680	

3 (d)(i)		Award all 3 marks for 2.09 (kJ)	3
	Conversion (1) 200 g water to 0.2 kg	Allow correct conversion at any point in calculation	
	Substitution (1) 0.2 x 4.18 x 2.5		
	Evaluation (1) 2.09 (kJ)	Allow rounding to 2.1	
		Allow 2 marks for 2090	
		Max 2 marks for factor of 10 error	
		Ignore sign	
3 (d)(ii)	Award one mark for any of the following:		1
	(c) is kJ mol ⁻¹ and (d)(i) is kJ / different units used (1)	ORA	
	literature values used for calculation in 3(c) are under standard conditions / at 25°C (but the practical is not) / different conditions used (1)		
	literature values used for calculation are for 1 mole of sodium chloride (but the practical is not) (1)		
		Ignore reasons based calculation or experimental error	
		total	12 marks

Question Number	Answer	Additional Guidance	Mark
4 (a)	breaks the <u>bromine</u> bond / homolytic (bond) fission of bromine (molecule) (1)		2
	free radical(s) form / each (bromine) atom has {an unpaired / a single} electron (1)		
		Accept equation Br-Br \rightarrow 2Br• (2)	
		(1 mark for breaking Br-Br bond)	
		(1 mark for bromine free radical being formed)	
4 (b)(i)	H Br H HCCH H H H	Accept bromine pointing down on middle carbon	1
4 (b)(ii)	B It has an asymmetrical structure		1
4 (b)(iii)	A 1-bromopropane		1

4 (b)(iv)	Identification point: Carbocation A is less stable / carbocation B is more stable (1) Any three explanation points from the following:		4
	carbocation B has more alkyl groups than carbocation A (1)	Allow more methyl groups / R groups / carbons on C+ in carbocation B	
		Allow A is a primary carbocation, B is a secondary carbocation	
	Alkyl branches {donate/ push} electrons to C+ (1)		
	more electrons are donated to C+ in carbocation B (1)		
	electrons (are negative so) {stabilise / balance / reduce} {positive charge / carbocation} (1)		
	more chance of carbocation B reacting than carbocation A (1)		
	ORA		
		total	9 marks
í			marks

Question	I	Indicative content	
5	Δ	nswers will be credited according to the learner's demonstration	
5	0	f knowledge and understanding of the material, using the	
	ir	indicative content and levels descriptors below. The indicative	
	C	ontent that follows is not prescriptive. Answers may cover some	
	0	r all of the indicative content, but learners should be rewarded	
	fo	or other relevant answers.	
	А	dvantages of hydration	
		All reactants used up to form ethanol	
		No waste product of CO_2 contributing to acid rain or global	
		warming	
	•	Raw material water is readily abundant/easy to obtain	
	•	Higher temperature so quicker reaction	
	•	Inorganic catalyst so more resistant to high temperatures	
	•	continuous reaction so is more efficient / recycle unused	
	•	Purer product as no other product formed	
	D	isadvantages of hydration	
	•	Reversible reaction so will not get 100% yield of ethanol	
	•	Lower yield than by fermentation so less efficient	
	•	Ethene from crude oil / fossil fuels so non-renewable /	
		environmental pollution	
	•	Cracking / fractional distillation of oil requires energy	
	•	cost	
	•	Strong acid catalyst so safety considerations	
Mark sch	omo (a	ward up to 6 marks) refer to the guidance on the cover of	
this docum	nent for	how to apply levels-based mark schemes*	
	Mark	Descriptor	
	Mark 0	No rewardable material	
	1_2	Adequate interpretation, analysis and/or evaluation of the	
Level I	1-2	scientific information with generalised comments being made	
		Generic statements may be presented rather than linkages	
		being made so that lines of reasoning are unsupported or	
		partially supported.	
		The discussion shows some structure and coherence	
Level 2	3-4	Good analysis, interpretation and/or evaluation of the	
		scientific information.	
		Lines of argument mostly supported through the application of	
		relevant evidence.	
		The discussion shows a structure which is mostly clear,	
		coherent and logical.	
Level 3	5-6	Comprehensive analysis, interpretation and/or evaluation of	
		all pieces of scientific information.	
		Line(s) of argument consistently supported throughout by	
		sustained application of relevant evidence.	
		clear, cohorent and logical	

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE