BOARD OF INTERMEDIATE EDUCATION, A.P.
 Mathematics - IIA
 Model Question Paper (w.e.f. 2013-14)

Note: This Question paper consists of three sections A. B and

Time: 3 Hrs
Max.Marks:75

SECTION - A

I. Very Short Answer type Guestions

(i) Answer all Guestions
(ii) Each Question carries 2 marks $\quad 10 \times 2=20$

1. Find the square root of $-5+12 i$.
2. If $\mathrm{z}_{1}=-1, \mathrm{z}_{2}=i$ then find $\operatorname{Arg}\left(\frac{z_{1}}{z_{2}}\right)$.
3. Find the value of $(1+i)^{16}$.
4. If α, β are the roots of the equation $a x^{2}+b x+c=0$, then find the value of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$.
5. Find the algebraic equation whose roots are two times the roots of $x^{5}-2 x^{4}+3 x^{3}-2 x^{2}+4 x+$ $3=0$.
6. Find the number of ways of arranging the letters of the word "INTERMEDIATE".
7. If ${ }^{n} \mathrm{P}_{r}=5040$ and ${ }^{n} \mathrm{C}_{r}=210$ find n and r.
8. If $\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots .+a_{2 n} x^{2 n}$ then find the value of $a_{0}+a_{2}+a_{4}+\ldots+a_{2 n}$.
9. The variance of 20 observations is 5 . If each observation is multiplied by 2 , then find the new variance of the resulting observations.
10. A poisson variable satisfies $\mathrm{P}(x=1)=\mathrm{P}(x=2)$ Find $\mathrm{P}(x=5)$.

SECTION - B

II. Short Answer type Guestions

(i) Answer any five Guestions
(ii) Each Guestion carries 4 marks
11. If $z=x+i y$ and if the point P in the Argand plane represents z, find the locus of z satisfying the equation $|z-2-3 i|=5$.
12. Find the range of $\frac{x+2}{2 x^{2}+3 x+6}$.
13. If the letters of the word MASTER are permuted in all possible ways and the words t formed are arranged in the dictionary order, then find the rank of the word "REMAST".
14. Find the number of ways of selecting a cricket team of 11 players from 7 batsmen and 6 bowlers such that there will be at least 5 bowlers in the team.
15. Resolve $\frac{x^{2}-3}{(x+2)\left(x^{2}+1\right)}$ into partial fractions.
16. Two persons A and B are rolling a die on the condition that the person who gets 3 will win the game. If A starts the game, then find the probabilities of A and B respectively to win the game.
17. A problem in calculus is given to two students A and B whose chances of solving it are $\frac{1}{3}$ and $\frac{1}{4}$ respectively. Find the probability of the problem being solved if both of them try independently.

SECTION - C

III. Long Answer type Questions

(i) Answer any five Questions
(ii) Each Question carries 7 marks
18. Find all the roots of the equation $x^{11}-x^{7}+x^{4}-1=0$.
19. Solve: $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$.
20. If n is a positive integer and x is any nonzero real number, then prove that
$C_{0}+C_{1} \frac{x}{2}+C_{2} \cdot \frac{x^{2}}{3}+C_{3} \cdot \frac{x^{3}}{4}+\ldots . .+C_{n} \cdot \frac{x^{n}}{n+1}=\frac{(1+x)^{n+1}-1}{(n+1) x}$.
21. If $x=\frac{1.3}{3.6}+\frac{1.3 .5}{3.6 .9}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{3 \cdot 6 \cdot 9.12}+\ldots .$. then prove that $9 x^{2}+24 x=11$.
22. Calculate the variance and standard deviation for the following distribution :

Class	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
Frequency	3	7	12	15	8	3	2

23. The probabilities of three events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are such that $\mathrm{P}(\mathrm{A})=0.3, \mathrm{P}(\mathrm{B})=0.4, \mathrm{P}(\mathrm{C})=0.8$,
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.08, \mathrm{P}(\mathrm{A} \cap \mathrm{C})=0.28, \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0.09$, and $\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \geq 0.75$, show that $\mathrm{P}(\mathrm{B} \cap \mathrm{C})$ lies in the interval $[0.23,0.48]$.
24. A random variable x has the following probability distribution :

$\mathrm{X}=x_{i}$	0	1	2	3	4	5	6	7
$\mathrm{P}\left(\mathrm{X}=x_{i}\right)$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

Find (i) k (ii) the mean (iii) $\mathrm{P}(0<\mathrm{X}<5)$.

