Note: This Question paper consists of three sections A, B and C

SECTION - A

$10 \times 2=20$ Marks
I. Very Short Answer Questions:
(i) Answer All Questions
(ii) Each Question carries Two marks.

1. Find the value of x, if the slope of the line passing through $(2,5)$ and $(x, 3)$ is 2 .
2. Transform the equation $x+y+1=0$ into the normal form.
3. Show that the points $(1,2,3),(2,3,1)$ and $(3,1,2)$ from an equilateral Triangle.
4. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$.
5. Show that $\underset{x \rightarrow 0+}{\operatorname{Lt}}\left\{\frac{2|x|}{x}+x+1\right\}=3$.
6. Find $\lim _{x \rightarrow 0} \frac{e^{x+3}-e^{3}}{x}$.
7. If $f(x)=a^{x} e^{x^{2}}$ find $f^{\prime}(x)($ where $a>0, a \neq 1)$.
8. If $y=\log [\sin (\log x)]$, find $\frac{d y}{d x}$.
9. Find the approximate value of $\sqrt[3]{65}$.
10. Find the value of ' C ' in Rolle's theorem for the function $f(x)=x^{2}+4$ on $[-3,3]$.

II. Short Answer Questions.

(i) Answer any Five questions.
 (ii) Each Question carries Four marks.

11. $\quad \mathrm{A}(2,3)$ and $\mathrm{B}(-3,4)$ be two given points. Find the equation of the Locus of P , so that the area of the Triangle PAB is 8.5 sq. units.
12. When the axes are rotated through an angle $\frac{\pi}{6}$ find the transformed equation of $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$.
13. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units from the point $(3,2)$.
14. Show that $f(x)= \begin{cases}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2}\left(b^{2}-a^{2}\right) & \text { if } x=0\end{cases}$ where a and b are real constants is continuous at ' 0 '.
15. Find the derivative of $\sin 2 x$ from the first principle.
16. A particle is moving in a straight line so that after t seconds its distance s (in cms) from a fixed point on the line is given by $s=f(t)=8 t+t^{3}$. Find (i) the velocity at time $t=2 \sec$ (ii) the initial velocity (iii) acceleration at $t=2 \mathrm{sec}$.
17. Show that the tangent at any point θ on the curve $x=c \sec \theta, y=c \tan \theta$ is $y \sin \theta=x-c \cos \theta$.

SECTION - C

III. Long Answer Questions.

(i) Answer any Five questions.
(ii) Each Question carries Seven marks.
18. Find the equation of straight lines passing through $(1,2)$ and making an angle of 60° with the line $\sqrt{3} x+y+2=0$.
19. Show that the area of the triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=0$ and $l x+m y+$ is $\left|\frac{n^{2} \sqrt{h^{2}-a b}}{a m^{2}-2 h l m+b l^{2}}\right|$.
20. Find the value of k, if the lines joining the origin to the points of intersection of the curve $2 x^{2}-2 x y+3 y^{2}+2 x-y-1=0$ and the line $x+2 y=k$ are mutually perpendicular.
21. If a ray with d.c's l, m, n makes an angles α, β, γ and δ with four diagonals of a cube, then show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=\frac{4}{3}$.
22. If $x=\frac{3 a t}{1+t^{3}}, y=\frac{3 a t^{2}}{1+t^{3}}$ then find $\frac{d y}{d x}$.
23. At any point t on the curve $x=a(t+\sin t) ; y=a(1-\cos t)$ find lengths of tangent and normal.
24. A wire of length l is cut into two parts which are bent respectively in the form of a square and a circle. Find the lengths of the pieces of the wire, so that the sum of the areas is the least.

