(English Version)
Time: $\mathbf{3}$ hours
Max. Marks: 75
Note: This Question paper consists of three sections A, B and C
SECTION - A
$10 \times 2=20$ Marks
I. Very Short Answer Questions:
(i) Answer All Questions
(ii) Each Question carries Two marks.

1. If $A=\left\{0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}\right\}$ and $f: A \rightarrow B$ is a surjection defined by $f(x)=\cos x$ then find B.
2. Find the domain of the real-valued function $\frac{1}{\log (2-x)}$.
3. A certain bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs. 80 , Rs. 60 and Rs. 40 each respectively. Find the total amount the bookshop will receive by selling all the books, using matrix algebra.
4. If $A=\left[\begin{array}{cc}2 & -4 \\ -5 & 3\end{array}\right]$, then find $\mathrm{A}+\mathrm{A}^{\prime}$ and AA^{\prime}.
5. Show that the points whose position vectors are $-2 \bar{a}+3 \bar{b}+5 \bar{c}, \bar{a}+2 \bar{b}+3 \bar{c}, 7 \bar{a}-\bar{c}$ are collinear when $\bar{a}, \bar{b}, \bar{c}$ are non-coplanar vectors.
6. Let $\bar{a}=2 \bar{i}+4 \bar{j}-5 \bar{k}, \bar{b}=\bar{i}+\bar{j}+\bar{k}$ and $\bar{c}=\bar{j}+2 \bar{k}$. Find unit vector in the opposite direction of $\bar{a}+\bar{b}+\bar{c}$.
7. If $\bar{a}=\bar{i}+2 \bar{j}-3 \bar{k}$ and $\bar{b}=3 \bar{i}-2 \bar{j}+2 \bar{k}$ then show that $\bar{a}+\bar{b}$ and $\bar{a}-\bar{b}$ are perpendicular to each other.
8. Prove that $\frac{\cos 9^{0}+\sin 9^{0}}{\cos 9^{0}-\sin 9^{0}}=\cot 36^{\circ}$.
9. Find the period of the function defined by $f(x)=\tan \left(x+4 x+9 x+\ldots .+n^{2} x\right)$.
10. If $\sinh x=3$ then show that $x=\log _{e}(3+\sqrt{10})$.

SECTION - B

II. Short Answer Questions.
(i) Answer any Five questions.
(ii) Each Question carries Four marks.
11. Show that $\left|\begin{array}{lll}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{array}\right|=(a-b)(b-c)(c-a)$.
12. Let $\mathrm{ABCDE} F$ be regular hexagon with centre ' O ', show that
$\overline{\mathrm{AB}}+\overline{\mathrm{AC}}+\overline{\mathrm{AD}}+\overline{\mathrm{AE}}+\overline{\mathrm{AF}}=3 \overline{\mathrm{AD}}=6 \overline{\mathrm{AO}}$.
13. If $\bar{a}=\bar{i}-2 \bar{j}-3 \bar{k}, \bar{b}=2 \bar{i}+\bar{j}-\bar{k}$ and $\bar{c}=\bar{i}+3 \bar{j}-2 \bar{k}$ find $\bar{a} \times(\bar{b} \times \bar{c})$.
14. If A is not an integral multiple of $\frac{\pi}{2}$, prove that
(i) $\tan \mathrm{A}+\cot \mathrm{A}=2 \operatorname{cosec} 2 \mathrm{~A}$
(ii) $\cot \mathrm{A}-\tan \mathrm{A}=2 \cot 2 \mathrm{~A}$
15. Solve: $2 \cos ^{2} \theta-\sqrt{3} \sin \theta+1=0$.
16. Prove that $\cos \left(2 \tan ^{-1} \frac{1}{7}\right)=\sin \left(4 \tan ^{-1} \frac{1}{3}\right)$.
17. In a $\triangle \mathrm{ABC}$ prove that $\tan \left(\frac{B-C}{2}\right)=\frac{b-c}{b+c} \cot \frac{A}{2}$.

SECTION - C

$5 \times 7=35$ Marks

III. Long Answer Questions.

(i) Answer any Five questions.

(ii) Each Question carries Seven marks.
18. Let $f: A \rightarrow B, g: B \rightarrow C$ be bijections. Then prove that $(g o f)^{-1}=f^{-1} o g^{-1}$.
19. By using mathematical induction show that $\forall n \in N$,

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots . . . \text { upto } n \quad \text { terms }=\frac{n}{3 n+1} .
$$

20. If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right]$ then find $\left(A^{\prime}\right)^{-1}$.
21. Solve the following equations by Gauss - Jordan method
$3 x+4 y+5 z=18,2 x-y+8 z=13$ and $5 x-2 y+7 z=20$.
22. If $\mathrm{A}=(1,-2,-1), \mathrm{B}=(4,0,-3), \mathrm{C}=(1,2,-1)$ and $\mathrm{D}=(2,-4,-5)$, find the distance between $\overline{\mathrm{AB}}$ and $\overline{\mathrm{CD}}$.
23. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are angles of a triangle, then prove that

$$
\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}-\sin ^{2} \frac{C}{2}=1-2 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2} .
$$

24. In a $\Delta \mathrm{ABC}$, if $a=13, b=14, c=15$, find $\mathrm{R}, r, r_{1}, r_{2}$ and r_{3}.
