

FSMQ

Additional Mathematics

Unit 6993: Additional Mathematics

Free Standing Mathematics Qualification

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Annotations and abbreviations

Annotation	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or unstructured)
	and on each page of an additional object where there is no candidate response.
√and ×	
BOD	Benefit of doubt
FT	Follow through
Isw	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
AG	Answer given
M1 dep	Method mark dependent on a previous method mark(s)
сао	Correct answer only
00	Or equivalent
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for Additional Mathematics

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 can never be awarded.

В

Mark for a correct result or statement independent of Method marks.

Mark Scheme

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Section A

(Question		Answer	Marks	Guidan	Guidance	
1			1-2(x-3) > 4x $\Rightarrow a > bx \text{or} -a < -bx$	M1	Expand and collect	Do not allow = anywhere even if final answer correct	
			Either $a = 7$ or $b = 6$ in either of above	A1	soi		
			$\Rightarrow x < \frac{7}{6} (\text{ or } 1.17 \text{ or } 1.1\dot{6})$	A1	www isw		
				3			

Q	Question		Answer	Marks	Guidance
2			$\frac{dy}{dx} = 3x^2 - 4x + 2$ $\Rightarrow y = x^3 - 2x^2 + 2x (+c) oe$ Satisfied by (1, 3) $\Rightarrow 3 = 1 - 2 + 2 + c$ $(\Rightarrow c = 2)$ $\Rightarrow y = x^3 - 2x^2 + 2x + 2$	M1 A1 M1dep A1	Int: At least 1 power increased by 1: Beware mult by x Three terms ignoring c Substitution
			•		
				4	

Question	Answer	Marks	Guidance		
3	$3\sin x = 4\cos x \Longrightarrow \tan x = \frac{4}{3}$	M1 A1	For $\tan x$ For $\frac{4}{3}$	Allow $\tan^{-1}\left(\frac{4}{3}\right) = k$ or $\tan^{-1}\left(\frac{3}{4}\right) = k$	
	$\Rightarrow x = 53.1(3)$ and $x = 180 + 53.13 = 233(.13)$ Alternative: Square, use Pythagoras M1 $\Rightarrow \cos x = \pm 0.6 \text{ or } \sin x = \pm 0.8 \text{ A1(must include} \pm)$ Gives 53.1 A1 Or 233 B1 only if no extra values in range	A1 B1	One angle (53 not acceptable) ft Other angle B0 any extra values in range, ignore any outside range		
		4			

	Question		Answer	Marks	Guidance		
4	(i)		8-4+2-6=0 Alternative: Demonstration that $f(x) = (x-2)(x^2+x+3)$	B1	must be seen	i.e. powers evaluated	
				1			
	(ii)		f (x) = (x-2)(x ² + x + 3) D = b ² - 4 ac = 1 - 4 × 3 (= -11) (< 0) or (x+0.5) ² + 2.75 ≠ 0 so only one root or no other roots	M1 A1 M1 A1	Factorise: Any 2 correct terms of 3 term quadratic seen. For long division: first two terms For quad factor Numerical evidence must be seen on correct quadratic. Last statement must be seen. Condone reference to $(x - 2)$ being the root.	If quad factor is found in (i) then give credit in (ii) if seen in (ii) e.g. √-11 won't work	
				4			

Question		Answer	Marks	s Guidance	
5	(i)	11.5	B1	One number only seen or AB clearly identified	
			1		
	(ii)	Use 11.5, 15.5 and 20.5 $\cos B = \frac{11.5^2 + 15.5^2 - 20.5^2}{2 \times 11.5 \times 15.5} (= -0.1339)$ $\Rightarrow B = 97.7^0$	B1 M1 A1	Correct use of cosine rule on correct angle using values rounding to given values Answers rounding to 97.7	i.e. range [11.5,12.5]. [15.5,16.5],[19.5,20.5] Values must be consistent.
			3		

(Question		Answer	Marks		Guidance
6	(i)		(Distance for A:) $\frac{3}{4}t^2$	B 1	soi; ignore 100	
			(Distance for B:) t^2	B 1	soi; ignore 100	
			$\Rightarrow s = \frac{3}{2}(s+100) \text{ or } s+100 = \frac{3}{2} \text{ s or } \frac{3}{2}t^2+100 = t^2$	M1	Equating distances	
			$ = 3 = 4 \begin{pmatrix} 3 \pm 100 \end{pmatrix} \text{ or } 3 \pm 100 = 4 \text{ or } 4 $		leading to one of the 6	
			\Rightarrow s = 300 or 400 or t = 20		forms	
			\rightarrow B travels 400 m	A1		SC4 www for trial and error giving
					www	correct answer.
				4		
	(ii)		Using $v^2 = u^2 + 2as$	M1	And using $a = 2$ and their	Or complete and equivalent method.
			$\Rightarrow v^2 = 2.2.400 = 1600$		s from (1)	Allow missing <i>u</i>
			$\Rightarrow v = 40 \text{ m s}^{-1}$	A1	WWW	
				2		

(Questi	ion	Answer	Marks	Guidance	
7	(i)		2	B1		
				1		
	(ii)		For PB:	M1		If PB is found in (i) then give
			$PB = \sqrt{2^2 + 1.5^2} = 2.5$	A1		credit in (ii) only if seen in (ii).
			$\Rightarrow \tan PBQ = \frac{2}{2.5} = 0.8$	M1	Using <i>their</i> PQ and PB	
			\Rightarrow Angle PBQ = 38.7°	A1	Alternatively for the last two marks: Attempt to find QB and use it with sin, cos or sine rule	n.b. $QB = \sqrt{10.25}$
					or cosine rule	
				4		

(Questio	on	Answer	Marks	Gu	idance
8	(i)		$(1+\delta)^3 = 1^3 + 3 \cdot 1^2 \delta + 3 \cdot 1\delta^2 + \delta^3$	B1	Unsimplified expansion soi	Can be by expansion
			$=1+3\delta+3\delta^2+\delta^3$	B1		
				2		
	(ii)		Because, if δ is small, then (terms in) (3) δ^2 and	B1	"ignored" or similar must be	e.g. neglected, eliminated
			δ^3 are very small and can be ignored		seen	
				1		
	(iii)		$(1+\delta)^3 - 0.9(1+\delta) - 0.206 \ (=0)$	M1	Sub	
			$\Rightarrow 1 + 3\delta - 0.9(1 + \delta) - 0.206 (= 0)$ $\Rightarrow 2.1\delta = 0.106$	M1dep	Using result of (ii)	
			$\Rightarrow \delta = 0.05$ $\Rightarrow x = 1.05$	A1 A1	3sf or better	
				4		

(Questi	ion	Answer	Marks		Juidance
9	(i)		$\frac{dy}{dy} = 3r^2 = 6r = 3$	M1	Diffn. At least one power	Ignore $+c$
			$\frac{dx}{dx} = 5x + 6x + 5$		reduced by 1. Beware division	
			dv		by x	
			When $x = 3$, $\frac{y}{dx} = 6$	A1		
			\Rightarrow Equation of tangent is	M1dep	Any valid form using their	
			y + 5 = 6(x - 3) oe		gradient and $(3, -5)$.	
			$\Rightarrow y = 6x - 23$ oe	A1	oe only 3 terms	
				4		
	(ii)		$\frac{dy}{dt} = 3r^2 - 6r - 3 = 6$	M1	Equating <i>their</i> gradient fn and	
			$\frac{1}{dx} = 5x = 0x = 5 = 0$		their 6	
			$\Rightarrow x^2 - 2x - 3 = 0$			
			$\Rightarrow (x-3)(x+1) = 0$	A1	Correct factorisation www	
			$\Rightarrow \Omega$ is where $x = -1$, $y = 3$			Ignore $(3, -5)$ as a possible answer.
				A1	cao www	
						SC3 if $\frac{dy}{dx} = x^2 - 2x - 1 \Rightarrow g = 2$ in (i)
						and Q is correct.
				3		

(Question		Answer	Marks	Guidance	
10	(i)			B1 B1 B1 B1 B1	One line 2nd line 3^{rd} line Shading $x \le 1$ Other shading. Allow ft if gradients of lines are the same sign as the correct lines.	Allow one small square tolerance on each axis
				5		
	(ii)		Max value at intersection which is (3, 6) =45	B1 B1	soi	e.g. 45 gets 2
				2		

Section B

(Questi	ion	Answer	Marks	Guidano	ce
11	(i)		(OP =) 100 - 20t	B1	isw	Ignore labels
			(OQ =) 400 - 25t	B1	isw	
				2		
	(ii)			M1	Use of Pythagoras on <i>their</i> expressions.	Condone use of
			$(x^{2}) = (100 - 20t)^{2} + (400 - 25t)^{2}$			20t - 100 etc for full marks
			$(x) = (100 \ 201) + (100 \ 201)$	A1	So ignore lack of x^2	
			$x^2 = 170000 - 24000t + 1025t^2$	A1	Final answer must include x^2	
				3		
	(iii)		d (2) 24200 2050	M1	Diffn of <i>their</i> fn : reduction of power in	Ignore incorrect constant from
			$\frac{1}{dt}(x^2) = -24000 + 2050t$		at least one term	(ii)
			ut	A1	Correct numerical expression isw	Ignore notation on lhs
					-	\overrightarrow{SC} 1 for $b + 2ct$
			=0	M1dep	Set $= 0$ and attempt to solve	
			when $t = \frac{24000}{2050} \left(=\frac{480}{41}\right) = (11.7)$ oe	A1	Allow correct answer even if premature division in (i)	
			Then $x^2 = 29512$	M1dep	Substitute <i>their t</i> (providing $t > 0$). Dep on both M	
			$\Rightarrow x = 172 (\mathrm{m})$	A1		
				6		
	(iv)		Car takes 5 secs to reach O	B1	Numerical evidence for both required	Accept other valid explanations
			Train takes 16 secs			
				1		

Question		ion	Answer	Marks	Guidance				
12	(i)		$x + 3y = k \text{ or } y = -\frac{1}{3}x + c \text{ or } \frac{y - b}{x - a} = -\frac{1}{3}$	M1 M1den					
			gives $x + 3y = 17$ oe	A1	3 term equation isw	$k = 17$ or $c = \frac{17}{3}$ $y = -\frac{1}{3}x + \frac{17}{3}$			
						3 3			
	(::)			3 M1	Must load to a value for y or y	SC2 Charling points and			
	(II)		Solve their L_2 with $y = 3x - 1$ simultaneously: x - 2		Whist lead to a value for x or y	finding that $(2, 5)$ lies on both			
			v = 5	A1					
				3					
	(iii)		$d^{2} = (8-2)^{2} + (3-5)^{2} (=40)$	M1	Application of Pythagoras				
			$\Rightarrow d = \sqrt{40} \left(= 2\sqrt{10} = 6.32\right)$	A1					
				2					
	(iv)		$(x-8)^{2} + (y-3)^{2} = 40$	B1	FT from (iii) Allow 6.32^2 oe				
				1					
	(v)		The point is on the other end of the diameter:			Alternatively:			
			(2, 5) to (8, 3) is $\begin{pmatrix} 6 \\ -2 \end{pmatrix}$	M1	Using (8, 3) and <i>their</i> Q from (ii).	$\frac{2+x}{2} = 8, \ \frac{5+y}{2} = 3$ M1			
			$\Rightarrow (14,1)$ 3x - y = c satisfied by (14, 1)	A1		$\Rightarrow x = 14, y = 1$ A1			
			$\Rightarrow 3x - y = 41$ oe	A1	Only 3 terms				
	1	1		3					

Question		ion	Answer	Marks	Guidance			
13	(i)		$\frac{540}{x}, \frac{540}{x+75}$ oe	B1 B1	Condone $\frac{5.4}{x}, \frac{5.40}{x+0.75}$ or $\frac{5.40}{x+75}$	Ignore any labels. Allow $n \leq \frac{540}{x}$ etc		
				2				
	(ii)		$\Rightarrow \frac{540}{x} = \frac{540}{x+75} + 5 \text{oe}$ $\Rightarrow 540(x+75) = 540x + 5x(x+75) \text{oe}$	M1 A1 M1 A1	For forming 3 term eqn using <i>their</i> terms from (i) Condone -5 Correct eqn Clear both fractions. Eqn must have 3 terms with x and $x \pm 75$ involved in denominator for 2 terms	May start again		
			$\rightarrow (540 \times 75 - 5 \times (x + 75))$					
			$ \rightarrow (340 \times 73 = 3x(x + 73)) $					
			$\Rightarrow x^2 + 75x - 8100 = 0$	A1	AG. At least 1 intermediate step must be seen	Any wrong algebra gets final A0		
				5				
	(iii)		$x^2 + 75x - 8100 = 0$	M1	Solving given quadratic by factorisation that would lead to 2 terms correct when expanded soi Or correct formula soi			
			$\Rightarrow (x-60)(x+135) = 0$	A1	Correct factorisation or correct substitution			
			$\Rightarrow x = 60$ $\Rightarrow x + 75(=135) \text{ or } 60 + 75$ Buns 60p, loaf of bread 135p oe	A1 A1 A1 5	soi by final answer cao www - units must be given	Ignore –135 Correct answer only full marks		

Question		on	Answer	Answer Marks Guidance		ce
14	(i)		$\Rightarrow 7 = (-3)^3 + (-3)^2 a - 3b + 1$ oe	B1	1st equation	Need not be
			and $3 = 1 + a + b + 1$ oe	B1	2nd equation	simplified for either
			(0 - 2l - 22 - r l - l - 1)			
			$\Rightarrow (9a-3b=33 \text{ and } a+b=1)$			
				MI	Solve <i>their</i> eqns leading to	Need to see at least
			$\Rightarrow a = 3, b = -2$	4.1	either a or b	one intermediate
					Both AG	step
	(;;;)		Midnoint is (15)	4 R1		
	(II)		Show $(-1, 5)$ lies on sume	B1 R1	Must see $1 + 3 + 2 + 1 = 5$	i e nowers must be
			Show $(-1, 3)$ hes on curve.	DI	What see $-1 + 3 + 2 + 1 = 3$	evaluated
				2		
	(iii)		$A_{i} = +($ Area under curve $-$ area under line $)$	B 1	For sight of one attempt to	
					find a difference of areas	
			or $A_2 = \pm$ (Area under line – area under curve)			
			Area under surve $-\int (x^3 + 3x^2 - 2x + 1) dx = \frac{x^4}{x^4} + x^3 - x^2 + x(1 - a)$			
			Area under curve $-\int (x + 3x - 2x + 1) dx - \frac{-1}{4} + x - x + x(+c)$	M1	For integration, ignore	At least 3 powers
			((1))(81)	A1	limits	increased by 1.
			$A_1 = \left \left \frac{1}{4} - 1 - 1 - 1 \right - \left \frac{31}{4} - 27 - 9 - 3 \right \right - 12$	N/1.1	Integration correct	Watch for
				мпаер	Correct limits for one surve	$\begin{array}{c} \text{multiplication by } x \\ \text{Could be wrong way} \end{array}$
			$=\left(-\frac{11}{-75}\right)-12=16-12=4$		integral	round but must be
			$\begin{pmatrix} 4 & 4 \end{pmatrix}$ 12 10 12 1		(For $A_1 = 3$ to -1 and for	subtracted
			((1 + 1))(1 + 1)) = (1 + 1)		$A_2 = 1$ to 1)	5000000
			$A_2 = 8 - \left[\left(\frac{-}{4} + 1 - 1 + 1 \right) - \left(\frac{-}{4} - 1 - 1 - 1 \right) \right] = 8 - 4 = 4$	A1	112, 1001)	
				A1	For A_1 www	
					For A_2 www	n.b. an answer of –4
						should be explained
						for credit of A1
				6		

Question	Answer		Guidance	
	Alternative 1: if subtraction is before integration.	B1	For subtracting <i>their</i> $y = 4 - 4$	Could be subtracted
	$(x) \int (3 - 2 - 2 - 4 - 4 - 3) x^4 - 3 - x^2 - 4 - 4 - 3 - x^2 - 4 - 4 - 3 - $		<i>x</i> from curve	in either order
	$\left(A_{1}\right) = \int \left(x^{3} + 3x^{2} - 2x + 1 - (4 - x)\right) dx = \frac{1}{4} + x^{3} - \frac{1}{2} - 3x(+c)$	M1	For either integration,	
	+ 2		ignore limits	
	$-\left(\left(\frac{7}{2}\right), \left(-\frac{9}{2}\right)\right) - 4$	A1	Either integration correct	
	$\left[-\left(\left(\frac{1}{4} \right)^{-} \left(-\frac{1}{4} \right) \right)^{-4} \right]$	M1dep	Correct limits for one curve	Could be wrong way
	r^4 r^2		integral	round but must be
	$(A_2) = \int ((4-x) - (x^3 + 3x^2 - 2x + 1)) dx = -\frac{x}{4} - x^3 + \frac{x}{2} + 3x(+c)$		(For A_1 , -3 to -1 and for	subtracted.
			$A_2, -1 \text{ to } 1)$	
	((9) (7))	A1	For A_1 www	n.b. an answer of -4
	$=\left(\left(\frac{-}{4}\right)-\left(-\frac{-}{4}\right)\right)=4$			should be explained
		A1	For A_2 www	for credit of A1
	Alternative 2	B1	For subtracting <i>their</i> $y = 4 - $	
			<i>x</i> from curve	
	$y = (x^{3} + 3x^{2} - 2x + 1) - (4 - x) = x^{3} + 3x^{2} - x - 3$			
	$(x + 1)^3 - 4(x + 1)$	M1	Writing as a function of	
	y = (x+1) - 4(x+1)	Al	(x+1)	
		M1	Understanding of odd	
	This is an odd function relative to $x = -1$. The function therefore	Al	function	
	has 180° rotational symmetry about $(-1, 0)$	Al	Rotational symmetry	
	So $A_1 = A_2$		Conclusion	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

