Level 3 Certificate Mathematical Studies

1350/2B - Paper 2B - Critical path and risk analysis

Final Mark scheme

1350
June 2018

Version/Stage: v1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

\mathbf{Q}	Answer	Mark	Comments
$\mathbf{1 a}$	71.5	B 1	
	Additional Guidance		

Q	Answer	Mark	Comments
1b	Graph 1: EU immigration in the UK Identify 'm' as millions or state what ' m ' means Reposition 'm' Use grid/graph paper to enable more accurate readings Extend the all curves to 2045/ same point Add a broken axis Add a line for high net migration The starting point for each line should be the same Graph 2: Brexit's impact on the pound Use a key Indicate what 'NIESR' or 'OECD' stands for Use lines/points rather than bars Switch or remove the higher and lower labels Add more organisations Add space between each column Add (horizontal) grid lines Make it clear which currency they are comparing with	E4	E1 for each valid improvement with a maximum of E2 for each graph Ignore any additional but incorrect suggestions Not label the axes Not make lines distinct from each other Not define 'high' or 'low' Not make a bar chart SC1 (two errors identified but no suggestions for improvement) SC2 (three errors identified but no suggestions for improvement) eg. Don't know what ' m ' stands for, line not extended to 2045 etc
	Additional Guidance		

Q	Answer	Mark	Comments
1c	Alternative method 1		
	$14600000000 \div 52$ or $1.46 \times 10^{10} \div 52$ or $14.6 \div 52$ or $\text { [280 } 000 \text { 000, } 281000 \text { 000] }$	M1	oe
	[280 000 000, 281000 000] and No	A1	oe SC1 $14600000000 \div 48=304$ million and No
	Alternative method 2		
	350000000×52 or $3.5 \times 10^{8} \times 52$ or $\text { [18 } 000000 \text { 000, } 18300000 \text { 000] }$	M1	oe
	[18 000000 000, 18300000 000] and No	A1	oe SC1 $350000000 \times 48=16.8$ billion and No
	Alternative method 3		
	14.6billion $\div 350$ million	M1	
	41.7 weeks and No or 41.7 and 52 and No	A1	
	Additional Guidance		
	For use of $[48,52)$ use SC1 rule		
	Use of $365 \div 7$ or $365.25 \div 7$ in place of 52 is correct		
	Allow use of words such as million/billion or standard form rather than full ordinary figures		
	'Exaggeration' implies No		
	For final answer, allow self-correction		

Q	Answer	Mark	Comments
1d	Tim Alternative method 1		
	$(46500001-33577 \text { 342) } \div 46500001$ or $12922659 \div 46500001$ or 0.278 or $33577342 \div 46500001$ or 0.72	M1	```oe Condone interchange of 33 577 342 with 33551983 accept [0.26, 0.285] or [27, 28]% accept [0.715, 0.74] or [71.5, 74]%```
	0.278 or 27.8(\%) and No or 72 and 80 and No	A1	$\begin{aligned} & \text { accept }[0.27,0.28] \text { or }[27,28] \% \\ & \text { accept }[71.5,74] \% \end{aligned}$
	Tim Alternative method 2		
	```0.2\times46500 001 or 9 300 000 and 46500 001-33577 342```	M1	accept [9 200 000, 9400 000]   accept [46 000 000, 13000 000]   Condone interchange of 33577342 with 33551983
	9300000 and 12922659 and No	A1	
	Kelly   Alternative method 1		
	$\begin{aligned} & 16141241 \div 12 \text { or } 1345103 \\ & \text { and } \\ & 17410742 \div 1345103 \text { or } 12.9(\ldots) \end{aligned}$	M1	allow reverse order
	12.9(...) and Yes or 12.0(...) and Yes	A1	
	Kelly Alternative method 2		
	```16141241\div17410742 or [0.925,0.928 ] or 12\div13 or 0.923```	M1	allow reverse order
	[0.925,0.928] and 0.923 and Yes	A1	

Kelly
 Alternative method 3

\(\left.$$
\begin{array}{|l|c|l|}\hline \begin{array}{l}33551983 \div 25 \times 12 \text { or } 16104951 .(84) \\
\text { or } \\
33551983 \div 25 \times 13 \text { or } 17447031 .(16)\end{array}
$$ \& M1 \& Condone interchange of 33577342 with

33551983\end{array}\right]\)\begin{tabular}{l}

\hline 16104951 and 17447031 and Yes

\hline | Kelly |
| :--- |
| Alternative method 4 |

\hline
\end{tabular}

$12 \div 25$ or 0.48 or $13 \div 25$ or 0.52	M1	oe
0.48 and 0.52 and Yes	A1	oe

Kelly

Alternative method 5

$16141241 \div 12$ or 1345103 and $17410742 \div 13$ or 1339288		M1	
1345103 and 1339288 and Yes		A1	
Larissa			
$\begin{aligned} & 2000000+16141241 \text { or } 18141241 \\ & \text { or } \\ & 2000000+33577342 \text { or } 35577342 \\ & \text { or } \\ & 2000000+33551983 \text { or } 35551983 \end{aligned}$		M1	Condone interchange of 33577342 with 33551983
$\begin{aligned} & 18141241 \div \\ & 35577342(\times 100) \end{aligned}$	$\begin{aligned} & 18141241 \div \\ & 35551983(\times 100) \end{aligned}$	M1	oe Condone interchange of 33577342 with 33551983
0.509(...) or 0.51 and No (from using 35577 342)	0.5102(...) or 0.5103 and Yes (from using 35551 983)	A1	oe A1 for the correct answer and statement SC1 for 54.(...)\%

Additional Guidance

Be careful not all possible alternatives are shown for this question.
Any fully correct method gains full marks.
Condone interchange of 33577342 with 33551983

Q	Answer	Mark	Comments
2	Alternative method 1 - Euros		
	$1.08 \div 0.9$ or 1.2	M1	
	$17000 \times$ their 1.2 or 20400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18360 or 20196 or 20230
	253000×1.125 or 284625	M1	oe
	their 284625×1.08 or 307395	M1	oe
	their $20400+307395$ or 20400 + their 307395 or 327795	M1	
	327795 and Yes	A1	SC4 for 325755 or 327 591or 327625
	Alternative method 2- Pounds		
	$1.08 \div 0.9$ or 1.2	M1	
	$17000 \times$ their 1.2 or 20400	M1	Allow 1.08 or 1.188 or 1.19 in place of 1.2 to obtain 18360 or 20196 or 20230
	253000×1.125 or 284625	M1	oe
	their $20400 \div 1.08$ or 18888 .(89) or $327500 \div 1.08$ or 303240. (74)	M1	oe
	$\begin{aligned} & \text { their } 18888 .(89)+284625 \\ & \text { or } \\ & 18888 .(89)+\text { their } 284625 \\ & \text { or } \\ & 303513 .(89) \end{aligned}$	M1	
	```303 513.(89) and 303 240.(74) and Yes```	A1	SC4 for 301625 or 303325 or 303 356.(4815)
	Additional Guidance		
	Alternative 2: Method of $17000 \div 0.9(=18888.89)$ scores the $1^{\text {st }} \mathrm{M} 1,2^{\text {nd }} \mathrm{M} 1$ and $4^{\text {th }} \mathrm{M} 1$		


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{3 ( a )}$	91 or 179 seen	M1	oe
	$91 / 179$	A1	or 0.51 or 0.508


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{3 ( b )}$	Office B	B1	
	A higher proportion of people walk or   a lower proportion of people go by   car   or   More people walk and fewer go by   car	E1	Or other sensible reason   "More people walk and cycle" is not   sufficient.


Q	Answer	Mark	Comments		
$\mathbf{4 ( a )}$	$\mathrm{P}(D \mid S)=P(D) \quad\left(=\frac{3}{4}\right)$				
or	E1				
The probabilities on the second					
branches are the same: having a					
smart TV has not changed the					
probability of having a dishwasher					
or					
$P(D \cap S)=\frac{3}{10}$ and $P(D) \times P(S)=\frac{3}{10}$				$\quad$	
:---					


Q	Answer	Mark	Comments
4(b)(i)	$\frac{3}{5} \times \frac{1}{4} \times 1220$	M1	oe
	183	A1	Accept 180 with working


Q	Answer	Mark	Comments
4(b)(ii)	Assumption that the students in   Hugo's survey are representative of   the students in the school as a whole	E1	Or other reasonable answer



Q	Answer	Mark	Comments
5(a)(ii)	ADFH	B1	


Q	Answer	Mark	Comments
5(a)(iii)			Auto-marked


Q	Answer	Mark	Comments
5(a)(iv)	$2+7+8+3+3+2$   or 1 extra day	M1	
	25 (days)	A1	



Q	Answer	Mark	Comments
5(b)(ii)	13 days	B1ft	Follow through a non-zero float from (b)(i)


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{6 ( a )}$	$0.68 \times 0.80$ or 0.544	M1	
	$0.32 \times 0.49$ or 0.1568	M1	
	0.7008 or 0.701	A1	Accept $0.7(0)$ with working
Guidance			
Candidates may use a tree diagram			


Q	Answer	Mark	Comments
$\mathbf{6 ( b )}$	3500 or 3504 or 3505	B1ft	Ft their answer to 6(a)


$\mathbf{Q}$	Answer	Mark	Comments
$\mathbf{6 ( c )}$	$0.66 \times 0.75$ or 0.495 or $(1-0.66) x$	M1	
	$(1-0.66) x+0.495(=0.69)$	M1	
	their $0.34 x=0.195$   or $x=0.5735 \ldots$ or $x=0.574$	M1	
	$(x=) 0.57$	A1	Must be to 2 sig. fig.


Q	Answer	Mark	Comments
7 (a)	$2 \times 3000 \text { or } 6000$   or $12 \times 3000 \text { or } 36000$	B1	For working out cost of option C, either for 12 weeks or final two weeks
	$0.4 \times 0.9$ or 0.36	B1	For working out the probability of a one week delay
	$0.4 \times 0.1$ or (0.4-0.36) or 0.04	B1	For working out the probability of a two week delay
	$\begin{aligned} & 0.36 \times 9000 \text { or } 0.04 \times 18000 \text { or } 0.40 \times \\ & 9000 \\ & \text { or } 0.36 \times 39000 \text { or } 0.04 \times 48000 \text { or } \\ & 0.04 \times 42000 \\ & \text { or } 0.4 \times 39000 \text { or } 0.04 \times 9000 \end{aligned}$	M1	For working out the (extra) cost of 11 weeks or 12 weeks
	$\begin{aligned} & 0.36 \times 9000+0.04 \times 18000 \\ & \text { or } 0.4 \times 9000+0.04 \times 9000 \\ & \text { or } 3960 \\ & \text { or } \\ & 10 \times 3000+0.36 \times 9000+ \\ & 0.04 \times 18000 \\ & \text { or } \\ & 10 \times 3000+0.4 \times 9000+0.04 \times 9000 \\ & \text { or } 0.6 \times 30000+0.36 \times 39000 \\ & +0.04 \times 48000 \\ & \text { or } 0.6 \times 30000+0.4 \times 39000 \\ & +0.04 \times 9000 \\ & \text { or } 33960 \end{aligned}$	M1	For valid method to work out the expected cost of option A, either for 12 weeks or final two weeks
	$\begin{aligned} & 3000+0.04 \times 9000 \text { or } 3360 \\ & \text { or } 33000+0.04 \times 9000 \\ & \text { or } 0.6 \times 33000+0.36 \times 33000+0.04 \times \\ & 42000 \\ & \text { or } 33360 \end{aligned}$	M1	For valid method to work out the expected cost of option B, either for 12 weeks or final two weeks


	(Option A) $£ 33960$ or $£ 3960$   and   (Option B) $£ 33360$ or $£ 3360$   and   (Option C) $£ 36000$ or $£ 6000$	A1	
	Recommends Option B after using   probabilities to find expected values	E1	Follow through Option A or Option C if   consistent with their expected values


Q	Answer	Mark	Comments
$\mathbf{7}$ (b)	$(£ 640 \times 5=) £ 3200$	B1	Cost of additional worker for five weeks
	Comparison of $£ 3200$ with their $£ 3360$   or   $£ 33200$ with their $£ 33360$   and   Yes, they should employ the extra   worker.	E1	

