Problem I

A 300 gram ball is thrown normal to a wall. The ball approaches the wall at a speed of $20 \mathrm{~m} / \mathrm{s}$. The ball remains in contact with the wall for 0.06 seconds before rebounding at $12 \mathrm{~m} / \mathrm{s}$.

1. The change in momentum for the ball due to the wall is \qquad $\mathrm{N}^{*} \mathrm{sec}$.
2. The average force acting on the ball due to the wall is \qquad N .
3. The kinetic energy lost by the ball due to a collision with the wall is \qquad J.

Problem II

A 0.4 Kg object at rest experiences the following impulse as a function of time where F is measured in Newtons and t is in time. $\left.\mathbf{F}=60 \mathrm{e}^{\wedge}(\mathbf{- 9 0 (0 . 2 - t})^{2}\right)$ for $0 \leq \mathrm{t} \leq 0.4$ seconds.

4. The maximum force occurs at $\mathrm{t}=$ \qquad s.
5. The maximum force is \qquad N .
6. The maximum acceleration is
\qquad $\mathrm{m} / \mathrm{s}^{2}$.
7. The change in momentum for the object is \qquad $\mathrm{N}^{*} \mathrm{~s}$.
8. The final speed of the object is
\qquad m / s.

Problem III

The two objects in the above figure experience as head-on totally inelastic collision that takes places in 0.4 seconds.
9. The final velocity of the combined masses is \qquad m / s.
10. The momentum transferred from one block to the other is \qquad N^{*} sec.
11. The average force experienced by either block during collision is \qquad N .
12. The kinetic energy that was lost to heat is \qquad J.

Problem IV

Consider what would happen if the blocks from the previous problem collide under perfectly elastic conditions.
13. The 8 Kg block has a final velocity of
\qquad m / s.
14. The 4 Kg block has a final velocity of
\qquad m / s.
15. The momentum transferred from one block to the other is \qquad $N *$ sec.
16. The kinetic energy transferred from one block to the other is \qquad J.
17. The heat generated during the collision is \qquad J.

Problem V

The two objects in the figure below experience a two-dimensional totally inelastic collision.

18. The final heading of the combined masses will be \qquad ${ }^{\circ}$ above x axis.
19. The final speed of the combined masses will be \qquad m / s.
20. The kinetic energy lost during the collision is \qquad Joules.

Problem VI

A 33 Kg object at rest explodes into three parts. An 8 Kg part is blown to the right at $10 \mathrm{~m} / \mathrm{s}$. A 5 Kg part is blown down the page at $12 \mathrm{~m} / \mathrm{s}$.

21. The heading of the third part is \qquad ${ }^{\circ}$ above the negative x axis.
22. The mass of the third part is \qquad Kg.
23. The final speed of the third part is
\qquad m / s.
24. The energy released in the explosion is \qquad J.
25. Conservation of momentum comes directly from Newton's \qquad Law of Motion.

Answers:

1. $-9.6 \mathrm{~N}^{*} \mathrm{~s}$
2. -160 N
3. 38.4 Joules
4. 0.2 seconds
5. 60 N
6. $150 \mathrm{~m} / \mathrm{s}^{2}$
7. $11.13 \mathrm{~N}^{*} \mathrm{sec}$
8. $27.82 \mathrm{~m} / \mathrm{s}$
9. $3 \mathrm{~m} / \mathrm{s}$
10. $24 \mathrm{~N}^{*} \mathrm{sec}$
11. $\pm 60 \mathrm{~N}$
12. 108 Joules
$13.0 \mathrm{~m} / \mathrm{s}$
13. $+9 \mathrm{~m} / \mathrm{s}$
14. 48 N *sec
15. 144 Joules
16. 0 Joules
17. 28.1°
18. $10 \mathrm{~m} / \mathrm{s}$
19. 1500 J
20. 36.9°
21. 20 Kg
$23.5 \mathrm{~m} / \mathrm{s}$
22. 1010 Joules
23. $3^{\text {rd }}$ Law of Motion

Also be responsible for a ballistic pendulum type problem.

