Homework Solutions page 2

Items \#1 - \#3

1. From $\mathrm{F}_{\mathrm{NET}}=\mathrm{ma}, 72 \mathrm{~N}=9 \mathrm{Kg}(\mathrm{a})$ or $\mathrm{a}=8 \mathrm{~m} / \mathrm{s}^{2}$. Using $\mathrm{d}=\mathrm{v}_{\mathrm{o}} \mathrm{t}+1 / 2 \mathrm{at}^{2}, \mathrm{~d}=1 / 2(8) 3^{2}=36 \mathrm{~m}$. Using $v_{f}=v_{o}+a t, v_{f}=8(3)=24 \mathrm{~m} / \mathrm{s}$.
2. From $\mathrm{F}_{\mathrm{NET}}=\mathrm{ma},-24 \mathrm{~N}=8 \mathrm{Kg}(\mathrm{a})$ or $\mathrm{a}=-3 \mathrm{~m} / \mathrm{s}^{2}$. Using $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}, 0=12+-8(\mathrm{t})$ so $\mathrm{t}=1.5 \mathrm{sec}$.
3. From $\mathrm{F}_{\mathrm{NET}}=\mathrm{ma}, 30 \mathrm{~N}=5 \mathrm{Kg}(\mathrm{a})$ or $\mathrm{a}=6 \mathrm{~m} / \mathrm{s}^{2}$. Using $\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{ad}, \mathrm{v}_{\mathrm{f}}=\sqrt{ }\left[4^{2}+\right.$ $2(6) 10.67)]$ or $v_{f}=12 \mathrm{~m} / \mathrm{s}$. Using $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}, 12=4+6 \mathrm{t}$ so $\mathrm{t}=1.33 \mathrm{sec}$.
4. Skip. This is circular motion. We will come back to curving things.
5. Ditto!

Homework Solutions page 3

1. From $\Sigma F_{\perp}: \mathbf{n}-100 N=0 \quad \therefore \mathbf{n}=100 N$. Using $\mathrm{F}_{\mathrm{f}}=\mu \mathrm{n}=0.50(100 \mathrm{~N})=50 \mathrm{~N}$. Using $\Sigma \mathrm{F}_{\|}: 70 \mathrm{~N}-50 \mathrm{~N}=10 \mathrm{Kg}(\mathrm{a})$ or $20 \mathrm{~N}=10 \mathrm{Kg}(\mathrm{a}) \therefore \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$ Note, the net force is 20 N . Using $\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{ad}$ leads to $\mathrm{v}_{\mathrm{f}}=\sqrt{ }(2 * 2 * 9)=6 \mathrm{~m} / \mathrm{s}$.

2. $\Sigma \mathrm{F}_{\perp}: \mathbf{n}-100 \mathrm{~N}-260 \mathrm{~N}=0$ so $\mathbf{n}=360 \mathrm{~N}$. Using $\mathrm{F}_{\mathrm{f}}=\mu \mathrm{n}=0.67(360 \mathrm{~N})=240 \mathrm{~N}$. $\Sigma \mathrm{F}_{\|}: 318 \mathrm{~N}-240 \mathrm{~N}=26 \mathrm{Kg}(\mathrm{a})$ or $78 \mathrm{~N}=26 \mathrm{Kg}(\mathrm{a}) \therefore \mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$ Note, the net force is 78 N . Using $\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{ad}$ leads to $9^{2}=0^{2}+2(3) \mathrm{d}$ or $\mathrm{d}=13.5 \mathrm{~m}$.

3. $\Sigma \mathrm{F}_{\perp}: \mathbf{n}+300 \mathrm{~N}-833 \mathrm{~N}=0$ so $\mathbf{n}=533 \mathrm{~N}$. Using $\mathrm{F}_{\mathrm{f}}=\mu \mathrm{n}=0.75(533 \mathrm{~N})=400 \mathrm{~N} . \Sigma$ $\mathrm{F}_{\|}: 733 \mathrm{~N}-400 \mathrm{~N}=83.3 \mathrm{Kg}(\mathrm{a})$ or
the net force is 333 N . From $\mathrm{v}_{\mathrm{f}}=\mathrm{v}_{\mathrm{o}}+$ at the final speed is $v_{f}=0+4(3)=12 \mathrm{~m} / \mathrm{s}$

4. From $\Sigma \mathrm{F}_{\perp}: \mathbf{n}-78 \mathrm{~N}=0 \quad \therefore \mathbf{n}=78 \mathrm{~N}$.

Using $\mathrm{F}_{\mathrm{f}}=\mu \mathrm{n}=0.281(78 \mathrm{~N})=21.9 \mathrm{~N}$. $\Sigma \mathrm{F}_{\|}: 62.5 \mathrm{~N}-21.9 \mathrm{~N}=10 \mathrm{Kg}(\mathrm{a})$ or $40.6 \mathrm{~N}=10 \mathrm{Kg}(\mathrm{a})$. The net force is 40.6 N and acceleration is $4.1 \mathrm{~m} / \mathrm{s}^{2}$. The distance along the ramp is $5 \mathrm{~m} / \sin \left(38.66^{\circ}\right)=8 \mathrm{~m}$. Using $\mathrm{v}_{\mathrm{f}}{ }^{2}=\mathrm{v}_{\mathrm{o}}{ }^{2}+2 \mathrm{ad}, \mathrm{v}_{\mathrm{f}}=\sqrt{ }(2 * 4.1 * 8)$ $\mathrm{v}_{\mathrm{f}}=8.1 \mathrm{~m} / \mathrm{s}$.

Last problem continued on next page.
5. From $\Sigma F_{\perp} \mathbf{n}-150 N=0 \quad \therefore \mathbf{n}=150 N$.

Using $\mathrm{F}_{\mathrm{f}}=\mu \mathrm{n}=5 / 6(150 \mathrm{~N})=125 \mathrm{~N}$.
$\Sigma \mathrm{F}_{\|}: 474.5 \mathrm{~N}-260 \mathrm{~N}-125 \mathrm{~N}=30 \mathrm{Kg}(\mathrm{a})$ or $89.5 \mathrm{~N}=30 \mathrm{Kg}(\mathrm{a})$. The net force is 89.5 N and acceleration is $3.0 \mathrm{~m} / \mathrm{s}^{2}$. The distance up the ramp is 10 m . Using $\mathrm{d}=\mathrm{v}_{\mathrm{o}} \mathrm{t}+1 / 2 \mathrm{at}^{2}, 10=1 / 2(3.0) \mathrm{t}^{2}$ or $\mathrm{t}=2.6$ seconds. The free-body diagram is shown in the figure to the right.

Homework Solutions page 6

1. $\Sigma \mathrm{F}_{6}: 60 \mathrm{~N}-\mathrm{T}=6 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{4}: \mathrm{T}-40 \mathrm{~N}=4 \mathrm{Kg}(\mathrm{a})$ These equations come from the diagrams below:

Adding the equations leads to $60 \mathrm{~N}-40 \mathrm{~N}=10 \mathrm{Kg}(\mathrm{a})$ or $\mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$ and a tension of $\mathrm{T}=48 \mathrm{~N}$.
2. $\Sigma \mathrm{F}_{3}: 30 \mathrm{~N}-\mathrm{T}=3 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{7}: \quad \mathrm{T}-0=7 \mathrm{Kg}(\mathrm{a})$
Adding the equations leads to 30 N $=10 \mathrm{Kg}(\mathrm{a})$ or $\mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$. Subbing for the acceleration back into the equation for the forces on the 7 Kg object gives a value for Tension of 21 N . this is small enough to lower the 30 N weight and still pull the cart forward.

3. $\Sigma \mathrm{F}_{4}: 40 \mathrm{~N}-\mathrm{T}=4 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{6}: \mathrm{T}-30 \mathrm{~N}=6 \mathrm{Kg}(\mathrm{a})$ The second term in the second equation comes
from the use of $\mathrm{F}_{\mathrm{f}}=\mu \mathrm{n}=0.5(60 \mathrm{~N})$.
The result of adding equations is $10 \mathrm{~N}=10 \mathrm{Kg}(\mathrm{a})$ or $\mathrm{a}=1 \mathrm{~m} / \mathrm{s}^{2}$. Subbing for the value of "a" gives a tension of $\mathrm{T}=36 \mathrm{~N}$.

4. $\Sigma \mathrm{F}_{8}: \quad 80 \mathrm{~N}-\mathrm{T}=8 \mathrm{Kg}(\mathrm{a})$ $\Sigma \mathrm{F}_{5}: \mathrm{T}-30 \mathrm{~N}-24 \mathrm{~N}=5 \mathrm{Kg}(\mathrm{a})$ The second term in the 5 Kg equation is for the part of the weight parallel to the surface. The third term in $2^{\text {nd }}$ equation is the friction found from $F_{f}=\mu n$. By adding the equations, $26 \mathrm{~N}=13 \mathrm{Kg}(\mathrm{a})$. The acceleration is $2 \mathrm{~m} / \mathrm{s}^{2}$ and $\mathrm{T}=64 \mathrm{~N}$.
5. Use the same equations as before but take out the -24 N friction term.
6. $\Sigma \mathrm{F}_{8}: 80 \mathrm{~N}-\mathrm{T}_{1}=8 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{5}: \mathrm{T}_{1}-\mathrm{T}_{2}=5 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{2}: \mathrm{T}_{2}-20 \mathrm{~N}=2 \mathrm{Kg}(\mathrm{a})$

Homework Solutions for page 11

1. $\Sigma \mathrm{F}_{8}: 48 \mathrm{~N}-\mathrm{F}_{8-2}=8 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{2}: \mathrm{F}_{8-2}-\mathrm{F}_{2-6}=2 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{6}: \mathrm{F}_{2-6}-0=6 \mathrm{Kg}(\mathrm{a})$
Summing these equations leads to $48 \mathrm{~N}=16 \mathrm{Kg}(\mathrm{a})$ and $\mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$. The force between the 2 Kg block and 6 Kg block is 18 N . The force between the 8 Kg block and 2 Kg block is 24 N .

2. These blocks will accelerate upward because the applied force is greater than the total weight of the system.
$\Sigma \mathrm{F}_{8}: 240 \mathrm{~N}-80 \mathrm{~N}-\mathrm{F}_{8-6}=8 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{6}: \mathrm{F}_{8-6}-60 \mathrm{~N}-\mathrm{F}_{6-2}=6 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{2}: \quad \mathrm{F}_{6-2}-20 \mathrm{~N}=2 \mathrm{Kg}(\mathrm{a})$
Summing these equations leads to $240 \mathrm{~N}-160 \mathrm{~N}=16 \mathrm{Kg}(\mathrm{a}) ; \mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2}$
By subbing the value for acceleration back into the other equations leads to $\mathrm{F}_{6-2}=30 \mathrm{~N}$ and $\mathrm{F}_{8-6}=120 \mathrm{~N}$.

3. These blocks will accelerate downward because the applied force is less than the total weight of the system. Now the downward forces are positive
$\Sigma \mathrm{F}_{8}: \mathrm{F}_{8-6}+80 \mathrm{~N}-128 \mathrm{~N}=8 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{6}: \mathrm{F}_{6-2}+60 \mathrm{~N}-\mathrm{F}_{8-6}=6 \mathrm{Kg}(\mathrm{a})$ $\Sigma \mathrm{F}_{2}: \quad 20 \mathrm{~N}-\mathrm{F}_{6-2}=2 \mathrm{Kg}(\mathrm{a})$
Summing these equations leads to $160 \mathrm{~N}-128 \mathrm{~N}=16 \mathrm{Kg}(\mathrm{a}) ; \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2}$ By subbing the value for acceleration back into the other equations leads to $F_{6-2}=16 \mathrm{~N}$ and $\mathrm{F}_{8-6}=64 \mathrm{~N}$. The freebody diagrams are the same as in \#2 except for the reduced applied force.
4. The action-reaction pair of forces in this problem is the force of friction between the blocks. The friction at the top of the 5 Kg block pulls the 4 Kg block to the right. The reaction is that the 4 Kg block pulls to the left on the 5 Kg block. And so forth.

$\Sigma \mathrm{F}_{2}: \quad \mathrm{F}_{4-2}-0=2 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{4}: \quad \mathrm{F}_{5-4}-\mathrm{F}_{4-2}=4 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{5}: \quad 44 \mathrm{~N}-\mathrm{F}_{5-4}=5 \mathrm{Kg}(\mathrm{a})$
The sum of the equations leads to $44 \mathrm{~N}=11 \mathrm{Kg}(\mathrm{a})$ or $\mathrm{a}=4 \mathrm{~m} / \mathrm{s}^{2}$. The force, F_{5-4}, has a value of 24 N . This is the friction on the top of the 5 Kg block that drags the 4 Kg block to the right. The friction on the top of the 4 Kg block that pulls the 2 Kg block along is 8 N . Using the $F_{f}=\mu n$ with $F_{f}=24 N$ and $n=60 N$ gives that $\mu \geq 0.4$ to prevent slipping.
5. .

$\Sigma \mathrm{F}_{2}: \quad 44 \mathrm{~N}-\mathrm{F}_{4-2}=2 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{4}: \quad \mathrm{F}_{2-4}-\mathrm{F}_{4-5}=4 \mathrm{Kg}(\mathrm{a})$
$\Sigma \mathrm{F}_{5}: \quad \mathrm{F}_{4-5}-0=5 \mathrm{Kg}(\mathrm{a})$
In this case the top block drags the middle block forward while the middle block drags the bottom block forward. The acceleration is still $4 \mathrm{~m} / \mathrm{s}^{2}$ if the blocks move without slipping; however, the friction coefficients must be larger to keep everything together. The friction between the top and middle blocks is $\mathrm{F}_{2-4}=36 \mathrm{~N}$. The friction between the bottom and middle blocks is $\mathrm{F}_{4-5}=20 \mathrm{~N}$. To keep the top block from slipping off the middle block would require a coefficient of friction value of $\mu=0.55$. To keep the middle block from slipping off the bottom block would require a coefficient of friction of $\mu=20 \mathrm{~N} / 60 \mathrm{~N}=$ 0.33 .

When using $\mathrm{F}_{\mathrm{f}}=\mu \mathbf{n}$ beware of using the correct value for the normal force. If you are considering the surface on top of the 4 Kg block then the normal surface is 20 N . If you are considering the surface between the 4 Kg block and the 5 Kg block then the normal force at that boundary is 60 N since that surface is supporting that much weight.

