GENERAL COMMENTS

The 2002 examination was based on the VCE VET modules within Units 3-4. These modules are:

- DC Power Supplies
- Analogue Systems
- Digital and Systems
- Digital Electronics 1
- Mathematics for Electronics 2.

The examination paper was divided into three sections - DC Power Supplies, Analogue Systems and a combined section of Digital Electronics 1 and Digital Systems. There was no separate section for Mathematics for Electronics 2, as an understanding of mathematics was incorporated into most questions. The examination contained a variety of questions types and required descriptive responses to short-answer questions as well as completion of drawings and diagrams. For the first time, the paper contained a number of multiple-choice questions at the start of each section.

Students were able to gain full marks for the question requiring calculation if both the correct answer with correct units was given. Students should state the formula used, show the substitution and workings. When working is shown, a small error such as placement of the decimal point, may still be awarded some marks.

The responses indicated that students had not undertaken enough practical exercises or product construction activities during Units 3 and 4. When students successfully complete VCE VET Electronics Units 3-4 they should have the basic skills and be ready for employment in the electronics industry sector at technical assistant level.

SPECIFIC INFORMATION

Section 1 - DC Power supplies

Question 4	These questions required calculations to be performed. Students were able to receive some marks if they showed an underlying understanding of the circuit, although the calculations were not perfectly performed. Many students failed to observe that the $\mathrm{V}_{\text {drop }}$ for the diodes was specified at 1 volt.	
	a-c $0 / 8$ 7 $1 / 8$ 3 $2 / 8$ 2 $3 / 8$ 10 $4 / 8$ 10 $5 / 8$ 16 $6 / 8$ 19 $7 / 8$ 6 $8 / 8$ 26 (Average mark 5.24)	a Acceptable answer: (at A, B) $\begin{aligned} \mathrm{V}_{\text {peak }} & =\mathrm{V}_{\text {rms }} \times 1.414 \\ & =18 \times 1.414 \\ & =25.45 \text { Volts } \end{aligned}$ b Acceptable answer: (at C, D) $\begin{aligned} \mathrm{V}_{\text {peak }} & =\mathrm{V}_{\mathrm{Vpk}(\mathrm{~A}, \mathrm{~B})}-2 \times \mathrm{V}_{\text {drop }} \\ & =25.45-2 \\ & =23.5 \mathrm{Volts} \end{aligned}$ c Acceptable answer: $\begin{aligned} \mathrm{T} & =1 / \mathrm{f} \\ & =1 / 50 \\ & =0.02 \text { seconds or } 20 \mathrm{~ms} \text { (milliseconds) } \end{aligned}$ Students should have expressed the answer in ms (milliseconds.)
	$\mathbf{d - e}$ $0 / 5$ 11 $1 / 5$ 15 $2 / 5$ 14 $3 / 5$ 15 $4 / 5$ 19 $5 / 5$ 26 (Average mark 2.93)	d Figure 4

Question 6	a-d $0 / 7$ $1 / 7$ $2 / 7$ $3 / 7$ $4 / 7$ $5 / 7$ $6 / 7$ $7 / 7$ (Average mark 3.24)	$\begin{aligned} & 19 \\ & 10 \\ & 3 \\ & 8 \\ & 30 \\ & 18 \\ & 7 \\ & 4 \end{aligned}$	a Correct answer: 5 V Students had to recognise the 7805 (IC1) has a 5 Volt DC output. b Acceptable answer: $\begin{aligned} \mathrm{P} & =\mathrm{V} \times \mathrm{I} \\ & =5 \times 0.5 \\ & =2.5 \mathrm{~W} \text { (Watts) } \end{aligned}$ Correct units were required for full marks to be awarded. c Acceptable answer: To provide stability to the regulator, particularly at higher frequencies. d Acceptable answer: Provide increased cooling to the regulator by attaching a heatsink.
Question 7	These were concept questions and students were often distracted by the diagrams rather than addressing the basic questions (as in Question 7a, maximum current flows under short circuit conditions).		
	a-b $0 / 4$ $1 / 4$ $2 / 4$ $3 / 4$ $4 / 4$ (Average mark 1.59)	50 3 4 25 18	a Acceptable answer: zero Ω b Acceptable answer: $\begin{aligned} \mathrm{I}_{\mathrm{s} / \mathrm{c}} & =\mathrm{V} / \mathrm{R} \\ & =5 / 0.8 \\ & =6.25 \mathrm{~A}(\mathrm{Amps}) \end{aligned}$ Correct units were required for full marks to be awarded.

Section 2 - Analogue systems
Questions 1 to 3 were multiple-choice questions and were poorly answered. Students need to have the underpinning knowledge as the use of engineering notation is a core skill of the electrical and electronics industry.

		A block diagram or a description that identified the three essential parts of the conversion process was acceptable.
Question 6	a-c $0 / 5$ 30 $1 / 5$ 10 $2 / 5$ 10 $3 / 5$ 6 $4 / 5$ 18 $5 / 5$ 26 (Average mark 2.5)	a Correct answer: Frequency Modulation (FM) b Acceptable answer: Higher frequency $\begin{aligned} \mathrm{f} & =1 / \mathrm{T} \\ & =1 / 0.195 \mu \mathrm{~s} \\ & =5.13 \mathrm{MHz} \end{aligned}$ It was preferred that the answer be expressed in MHz; (although 5130000 Hz or 5130 kHz were accepted). In Question 6 b and 6 c students had to recognise which part of the waveform was the higher frequency and which part was the lower frequency. Students who did not interpret the waveform correctly and opted for the higher number on the time line were incorrect in selecting it as the higher frequency. Marks were not awarded if the highest frequency and the lowest frequency were not identified. The unit of Hz had to be stated for full marks to be awarded. c Acceptable answer: Lower Frequency $\begin{aligned} \mathrm{f} & =1 / \mathrm{T} \\ & =1 / 0.205 \mu \mathrm{~s} \\ & =4.88 \mathrm{MHz} \end{aligned}$ The answer needed to be expressed in MHz (4880000 Hz or 4880 kHz was accepted).
Question 7	a-b $0 / 2$ 3 $1 / 2$ 41 $2 / 2$ 56 (Average mark 1.52)	a Correct answer: Resistor b Correct answer: Resistor
Question 8	a-b $0 / 2$ 20 $1 / 2$ 50 $2 / 2$ 30 (Average mark 1.09)	a LDR - Light Dependent Resistor b Correct answer: D - NPN transistor Although many students identified the symbol as a transistor, it was often incorrectly identified as a PNP transistor. The identification of simple electronic components is established within Units 1 and 2 and further reinforced in Unit 3 and 4 practical exercises.
	c-e $0 / 3$ 15 $1 / 3$ 20 $2 / 3$ 22 $3 / 3$ 43 (Average mark 1.92)	c Correct answer: C - a voltage divider circuit d Correct answer: B - near zero volts Students had to have some understanding of how a single transistor amplifier worked, to respond to Question 8d and 8e. e Correct answer: A. near supply voltage.

Section 3 - Digital electronics 1 and Digital and computer systems

Question 1	$0 / 1$	33	Acceptable answers: Less maintenance, no cleaning or works on different
	$1 / 1$	67	surfaces.
	(Average		
	mark		
	0.67)		

