Chemistry 2008-2011 Written examination - Mid-year

Examination Specifications

Overall conditions

The examination will be sat at a (mid-year) time and date to be set annually by the Victorian Curriculum and Assessment Authority.

There will be 15 minutes reading time and 90 minutes writing time.
VCAA examination rules will apply. Details of these rules are published annually in the VCE and VCAL Administrative Handbook.

The examination will be marked by a panel appointed by the VCAA.
The examination will contribute 33 per cent to the Study Score.

Content

All of the key knowledge in Unit 3 is examinable. All the key skills, as outlined on page 12 of the Chemistry VCE Study Design, are examinable.

Approved materials and equipment

Dictionaries are not allowed in the examination room in this study.
A scientific calculator is allowed in the examination room for this study.

Format

The examination paper will be in the form of a question and answer book. There will be a Data Book supplied with the examination.
The examination will consist of two sections, Section A and Section B.
Section A will contain approximately 20 multiple-choice questions. Each question in Section A will be worth one mark, and all questions will be compulsory.
Section B will contain compulsory short answer questions worth 45-60 marks.

Advice

The VCE study, Chemistry, has been reaccredited for implementation in Units 3 and 4 in 2008.
During the 2007(8)-2011 accreditation period for VCE Chemistry, examinations will be prepared according to the Examination specifications above. Each examination will conform to these specifications and will test a representative sample of the key knowledge and skills.

STUDENT NUMBER
Figures
Words

\square

CHEMISTRY

Written examination 1

Day Date 2008

Reading time: *.** to *.** (15 minutes)
Writing time: *.** to *.** (1 hour 30 minutes)

QUESTION AND ANSWER BOOK

Structure of book

Section	Number of questions	Number of questions to be answered	Number of marks
A	20	20	20
B	6	6	47
			Total 67

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

Materials supplied

- Question and answer book of 18 pages.
- A data book.
- Answer sheet for multiple-choice questions.

Instructions

- Write your student number in the space provided above on this page.
- Check that your name and student number as printed on your answer sheet for multiple-choice questions are correct, and sign your name in the space provided to verify this.
- All written responses must be in English.

At the end of the examination

- Place the answer sheet for multiple-choice questions inside the front cover of this book.
- You may keep the data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

SECTION A - Multiple-choice questions

Instructions for Section A

Answer all questions in pencil on the answer sheet provided for multiple-choice questions.
Choose the response that is correct or that best answers the question.
A correct answer scores 1 , an incorrect answer scores 0 .
Marks will not be deducted for incorrect answers.
No marks will be given if more than one answer is completed for any question.

Question 1

Gravimetric analysis is used to determine the purity of a sample of potassium chloride. A 5.00 g sample of impure potassium chloride is dissolved in water and excess silver nitrate, $\mathrm{AgNO}_{3}(\mathrm{aq})$, added. The precipitate of silver chloride, AgCl , was dried and weighed. Its mass was found to be 4.85 g .
The percentage by mass of KCl in the impure sample of KCl is closest to
A. 0.15
B. 3.00
C. 50.5
D. 97.0

Question 2

The sodium ion content of a particular brand of soy sauce is determined using atomic absorption spectroscopy.
Four aqueous samples of known Na^{+}concentration are prepared as standard solutions and their absorbance measured to obtain the following calibration graph.

20.0 mL of the soy sauce is diluted to 250.0 mL in a volumetric flask. The absorbance of this diluted solution, measured in the same way as the standard solutions, is found to be 0.175 .
The concentration, in $\mathrm{mg} \mathrm{L}^{-1}$, of Na^{+}in the sauce is closest to
A. 1.4
B. 28
C. 350
D. 4380

Question 3

The volume, in mL , of pure water that must be added to 50.0 mL of $0.0100 \mathrm{M} \mathrm{HNO}_{3}$ to produce a diluted solution of pH 4.00 is closest to
A. 50
B. 450
C. 4950
D. 5000

Question 4

The mass, in gram, of one molecule of propanoic acid is
A. 74
B. 88
C. 1.2×10^{-22}
D. 1.5×10^{-22}

Question 5

Aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right.$; molar mass $\left.180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ can be prepared by the acid-catalysed reaction of salicylic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right.$; molar mass $\left.138 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ with acetic anhydride $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right.$; molar mass $102 \mathrm{~g} \mathrm{~mol}^{-1}$), according to the equation

$$
\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{CH}_{3} \mathrm{COOH}
$$

If 30.0 g of salicylic acid is reacted with 100 g of acetic anhydride and 27.5 g of aspirin is formed, the percentage yield of aspirin is closest to
A. 91.7
B. 70.3
C. 27.5
D. 15.6

Question 6

The oxidation number of Mn in KMnO_{4} is
A. +2
B. +3
C. +6
D. +7

Question 7

Which one of the following equations represents a redox reaction?
A. $\quad \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{S}^{2-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
B. $\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \rightarrow \mathrm{HSO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
D. $\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}^{-}(\mathrm{aq})+\mathrm{IO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Question 8

1-propyl butanoate is the product of a reaction involving concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$

Question 9

When a molecule absorbs infrared radiation this is most likely to lead to
A. transitions between electronic energy levels in the molecule.
B. transitions between vibrational energy levels in the molecule.
C. transitions within nuclei of atoms in the molecule when the molecule is placed in a strong magnetic field.
D. the removal of an electron from the molecule leading to the formation of the molecular ion.

Question 10

Which of the following instruments would be best suited to the detection of unburnt hydrocarbon pollutants found in the atmosphere?
A. gas chromatography
B. UV-visible spectroscopy
C. thin layer chromatography
D. atomic absorption spectroscopy

Question 11

A mixture of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$, pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$ and hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ was analysed in a gas-liquid chromatography column. The following output was obtained.

Given that the sensitivity of the detector is the same per mole for all three substances, the mole percentage of hexane in the sample is closest to
A. 20
B. 30
C. 33
D. 50

Question 12

Which combination of the following factors will affect the time taken for a sample to pass through a highperformance liquid chromatography column?

I temperature
II length of the column
III flow rate of the carrier gas
A. I and II only
B. II and III only
C. I and III only
D. I, II and III

Question 13

Which one of the following amino acids has five carbon atoms and when placed into water will most likely result in a solution with a pH greater than 7 ?
A. lysine
B. glutamine
C. aspartic acid
D. glutamic acid

Question 14

Compound A is converted to compound X as shown

In the mass spectrum at which m / e value would you expect to observe the molecular ion corresponding to compound X?
A. 56
B. 57
C. 58
D. 59

Question 15

Which one of the following compounds will show an absorption band in the infrared spectrum at about $3500 \mathrm{~cm}^{-1}$?
A.

B.

C.
$\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
D.

Question 16

The structure of the molecules shown above could most readily be distinguished based on the results of
A. measurements of the ${ }^{1} \mathrm{H}$ NMR spectra of the compounds.
B. the ratio of m / e for the molecular ion in their mass spectra.
C. measurements of the UV- visible absorption spectra of the compounds.
D. a determination of the percentage composition of each substance.

Question 17

paracetamol
Paracetamol (above) is widely used in the treatment of pain.
Which one of the following statements about paracetamol and the chemistry of this compound is not correct?
A. Paracetamol contains the amide functional group.
B. When paracetamol undergoes a hydrolysis reaction, $\mathrm{CH}_{3} \mathrm{OH}$ is one of the products.
C. Paracetamol would be expected to display a singlet at about 2.0 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum.
D. Paracetamol would be expected to show an infrared absorption at about $1700 \mathrm{~cm}^{-1}$.

Question 18

The structures of the two amino acids isoleucine and leucine are shown below.

The ${ }^{13} \mathrm{C}$ NMR spectra can be used to uniquely identify each amino acid.
Isoleucine and leucine respectively will produce ${ }^{13} \mathrm{C}$ NMR spectra with the following number of peaks.
A. 6 and 6
B. 5 and 4
C. 6 and 4
D. 6 and 5

Question 19

It is possible to synthesise DNA in the laboratory using the DNA nucleotides as starting materials.
Which of the following molecules is a nucleotide that could be used in the synthesis of a DNA sample?
A.

B.

D.

Question 20

A piece of double stranded DNA, which is 100 base pairs in length, contains 30 guanine bases. The number of thymine bases in the piece of DNA will be
A. 20
B. 30
C. 50
D. 70

SECTION B - Short answer questions

Instructions for Section B

Answer all questions in the spaces provided.
To obtain full marks for your responses you should

- give simplified answers with an appropriate number of significant figures to all numerical questions; unsimplified answers will not be given full marks.
- show all working in your answers to numerical questions. No credit will be given for an incorrect answer unless it is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an indication of state; for example, $\mathrm{H}_{2}(\mathrm{~g}) ; \mathrm{NaCl}(\mathrm{s})$

Question 1

Citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, is an acid found in the juice of many fruit. The following analysis was carried out to determine the concentration of citric acid in a sample of lemon juice.
A 25.00 mL sample of the lemon juice was diluted to 100.0 mL in a volumetric flask. A 20.00 mL aliquot of this diluted solution was added to a 100 mL conical flask with two drops of indicator. A burette was filled with a solution of 0.142 M sodium hydroxide, NaOH , and the titration produced an average titre of 11.88 mL .
The equation for the reaction is

$$
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a. Calculate the concentration, in $\mathrm{mol} \mathrm{L}^{-1}$, of $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$ in the undiluted lemon juice.
\qquad
4 marks
b. The pH at the equivalence point of this titration is very close to 9 . Select, from the list of indicators in your data book, a suitable indicator for this titration and indicate the colour change you would expect as the end point is reached.

Name of indicator \qquad
Colour change from \qquad to \qquad
c. Solid NaOH is unsuitable as a primary standard in volumetric analysis.
i. Explain the meaning of the term 'primary standard'.
\qquad
\qquad
\qquad
\qquad
ii. Suggest why solid NaOH is not suitable for use as a primary standard.
\qquad
\qquad
\qquad
iii. Prior to the experiment, the concentration of the NaOH was experimentally determined by titrating the NaOH against a standard solution of HCl . Suppose about 10 mL of the HCl were spilt on the floor during the experiment.
How would you safely neutralise the spill?
\qquad
\qquad
\qquad
$1+1+1=3$ marks
d. The table below shows different ways in which particular items of glassware could be rinsed immediately before use. Indicate, by ticking the appropriate box in the table, what effect each rinsing would have on the calculated concentration of citric acid.

	Glassware	Solution(s) used for final rinsing	Result too low	Result too high	Correct result
i.	burette	water			
ii.	20.00 mL pipette	diluted lemon juice			
iii.	100 mL conical flask	$0.142 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$			
iv.	100.0 mL volumetric flask	water			

4 marks
Total 13 marks

Question 2

A gaseous mixture of two alkanes, each with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$, is reacted with bromine, Br_{2}, in the presence of UV light, to form a complex mixture of liquid bromoalkanes.
a. Name a suitable technique which would allow a large scale separation of this mixture into its various components.
\qquad
1 mark
b. Four bromoalkanes with the same molecular formula but different structures, are isolated from the mixture. Their composition by mass is

$$
\text { C } 35.0 \% ; \quad \text { H } 6.6 \% ; \quad \text { Br } 58.4 \% \text {. }
$$

i. Determine the empirical formula of these bromoalkane isomers.

The molar mass of these bromoalkanes is found to be $137 \mathrm{~g} \mathrm{~mol}^{-1}$.
ii. What is their molecular formula?
\qquad
\qquad
\qquad
iii. In the boxes provided, draw the structural formulas and write the names of these four bromoalkanes.
\square

$2+1+4=7$ marks
SECTION B-Question 2 - continued
c. One of the bromoalkane isomers described in part \mathbf{b}. shows two lines in the ${ }^{13} \mathrm{C}$ NMR spectrum and its ${ }^{1} \mathrm{H}$ NMR spectrum is shown below.

i. Circle the box in which you have drawn the formula of this compound in part \mathbf{b}.
ii. Explain how you have used the NMR data to identify this bromoalkane isomer.
\qquad
\qquad
\qquad
\qquad
$1+2=3$ marks
Total 11 marks

Question 3

There are two isotopes of naturally occurring chlorine, ${ }^{35} \mathrm{C} 1$ and ${ }^{37} \mathrm{C} 1$. Chlorine reacts with methane in the presence of ultraviolet light to form a mixture of compounds. One of the products, X , is known to be either chloromethane or dichloromethane. It is analysed using mass spectroscopy and the following mass spectrum obtained.

a. Explain the presence of
i. the two lines at 50 and 52
\qquad
\qquad
\qquad
ii. the line at 15 .
\qquad
\qquad
$1+1=2$ marks
b. On the basis of this mass spectrum, determine whether X is chloromethane or dichloromethane, giving an explanation for your choice.
\qquad
\qquad
1 mark
Total 3 marks

Question 4

a. Vitamin D and cholesterol are biomolecules with very similar structures. Circle two functional groups that are present in both vitamin D and cholesterol. Next to the functional groups circled, give their name.

b. In the space provided, give the structural formulas, showing all bonds, of the carbon-containing products of the following reactions.
i.

ii.

iii.

c. Write an equation for each of the reactions in the organic reaction pathway for the conversion of propane to 1-propanol.
\qquad
\qquad

Question 5

a. On the diagram below, draw in the hydrogen bonds between a guanine and cytosine base pair as they would exist in the DNA double helix.

1 mark
b. When double stranded DNA samples are heated, the strands begin to separate in a process which is called DNA 'melting'. The following diagram depicts two fragments of double stranded DNA.

fragment A

fragment B
i. Identify which fragment will separate more readily as the temperature is raised. Explain your answer.
\qquad
\qquad
ii. How many water molecules would be required to hydrolyse fragment A into its constituent nucleotides?
\qquad
\qquad
$1+1=2$ marks
c. Gel electrophoresis is a technique which can be used to separate DNA fragments in forensic chemistry. A mixture containing fragments of DNA of size $0.55 \mathrm{~kb}, 6.3 \mathrm{~kb}$ and 25 kb is placed onto a gel. (Note: 1 kb equals 1000 base pairs.)
After an electric current has passed through the gel, the DNA fragments are stained to become visible as bands on the gel.

Sample placed along this line

On the diagram above
i. label the negative and positive terminals of the gel (use the circles provided)
ii. label the DNA fragments according to their size.

Question 6

a. Consider the following paragraph.

Australian scientists in the forefront of medical research

Much research is taking place in Australia into the field of Proteomics. Proteomics is the large scale study of the proteins present in a living organism. The DNA of a cell provides the blueprint for the assembly of the primary structure of proteins, the large biomolecules essential to life. In humans, at any one time, there may be as many as 1000000 different proteins and it is those proteins that do all the real work such as providing structure to skin, digesting food and fighting infections. So significant is the role of proteins in living things that considerable resources are invested into identifying proteins as markers for disease.
i. What is meant by the term 'markers for disease' in the above paragraph?
\qquad
\qquad
\qquad
ii. How does the primary structure of a protein differ from its secondary structure?
\qquad
\qquad
$1+2=3$ marks
Proteins are large molecules formed from the polymerisation of amino acids. All the amino acids in proteins are $\mathbf{2}$-amino acids ($\boldsymbol{\alpha}$-amino acids).
b. What characteristic structure must an amino acid have to be classified as a $\mathbf{2}$-amino acid?
\qquad
\qquad
1 mark
c. A tripeptide is a molecule formed as a result of a condensation reaction between three amino acids.
i. How many different tripeptides can be formed from the reaction of one molecule of each of the amino acids alanine, glycine and serine?
ii. Draw the structure of one tripeptide formed from alanine, glycine and serine.

Some students were using chromatography to identify amino acids in two different mixtures of amino acids. The students were instructed to use a clean dropper to place each of the two different samples of amino acid mixture onto the plate. One student accidentally used the same dropper for each sample without cleaning it between each use.
d. State one way in which this student's final chromatogram would be different from a chromatogram that resulted from using the correct procedure.
\qquad
\qquad
1 mark
Total 8 marks

CHEMISTRY

 Written examination

 Written examination}

Day Date 2008
Reading time: *.** to *.** (15 minutes)
Writing time: *.** to *.** (1 hour 30 minutes)

DATA BOOK

Directions to students

- A question and answer book is provided with this data book.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

Table of contents

page

1. Periodic table of the elements 3
2. The electrochemical series 4
3. Physical constants 5
4. SI prefixes, their symbols and values 5
5. ${ }^{1} \mathrm{H}$ NMR data 5-6
6. ${ }^{13} \mathrm{C}$ NMR data 7
7. Infrared absorption data 7
8. 2-amino acids (α-amino acids) 8-9
9. Formulas of some fatty acids 10
10. Structural formulas of some important biomolecules 10
11. Acid-base indicators 11
12. Acidity constants, K_{a}, of some weak acids 11
13. Values of molar enthalpy of combustions of some common fuels at 298 K and 101.3 kPa 11
14. Periodic table of the elements

$\begin{gathered} \hline \mathbf{5 8} \\ \mathbf{C e} \\ 140.1 \\ \text { Cerium } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{5 9} \\ \text { Pr } \\ \text { Prasedymium } \end{array}$	$\begin{gathered} \mathbf{6 0} \\ \mathbf{N d} \\ 144.2 \\ \text { Neodymium } \end{gathered}$	$\begin{gathered} \mathbf{6 1} \\ \mathbf{P m} \\ \text { (145) } \\ \text { Promethium } \end{gathered}$	$\begin{gathered} \mathbf{6 2} \\ \mathbf{S m} \\ 150.3 \\ \text { Samarium } \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ \text { Eus.0 } \\ \text { Europium } \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ \text { Gas7.2 } \\ \text { Cadolinium } \end{gathered}$	$\begin{gathered} \mathbf{6 5} \\ \mathbf{T b} \\ 158.9 \\ \text { Terbium } \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ \text { Dys.5.5 } \\ \text { Dysprosium } \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ \text { 164.9 } \\ \text { Holmium } \end{gathered}$	$\begin{gathered} \hline \mathbf{6 8} \\ \text { Er } \\ 167.3 \\ \text { Erbium } \end{gathered}$	$\begin{gathered} \hline \mathbf{6 9} \\ \mathbf{T m} \\ 168.9 \\ \text { Thulium } \end{gathered}$	$\begin{gathered} \mathbf{7 0} \\ \mathbf{Y b} \\ \text { 173.0 } \\ \text { Yterbium } \end{gathered}$	$\begin{gathered} \hline 71 \\ \text { Lu } \\ \text { 175.0 } \\ \text { Lutetium } \end{gathered}$
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237.1)	(244)	(243)	(247)	(247)		(252)	(257)		(259)	(262)
Therium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

2. The electrochemical series

	E° in volt
$\mathrm{F}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{~F}^{-}(\mathrm{aq})$	+2.87
$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	+1.77
$\mathrm{Au}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Au}(\mathrm{s})$	+1.68
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(1)$	+1.23
$\mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.09
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$	$+0.68$
$\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{I}^{-}(\mathrm{aq})$	$+0.54$
$\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{OH}^{-}(\mathrm{aq})$	$+0.40$
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{s})$	$+0.34$
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$\mathrm{S}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	$+0.14$
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})$	0.00
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ni}(\mathrm{s})$	-0.23
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Co}(\mathrm{s})$	-0.28
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}(\mathrm{s})$	-1.03
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Al}(\mathrm{s})$	-1.67
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(\mathrm{s})$	-2.34
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{K}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{K}(\mathrm{s})$	-2.93
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{Li}(\mathrm{s})$	-3.02

3. Physical constants

Avogadro's constant $\left(N_{\mathrm{A}}\right)=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Charge on one electron $=-1.60 \times 10^{-19} \mathrm{C}$
Faraday constant $(F)=96500 \mathrm{C} \mathrm{mol}^{-1}$
Gas constant $(R)=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Ionic product for water $\left(K_{\mathrm{w}}\right)=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$ at 298 K
(Self ionisation constant)
Molar volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ of an ideal gas at $273 \mathrm{~K}, 101.3 \mathrm{kPa}(\mathrm{STP})=22.4 \mathrm{~L} \mathrm{~mol}^{-1}$
Molar volume $\left(\mathrm{V}_{\mathrm{m}}\right)$ of an ideal gas at $298 \mathrm{~K}, 101.3 \mathrm{kPa}(\mathrm{SLC})=24.5 \mathrm{~L} \mathrm{~mol}^{-1}$
Specific heat capacity (c) of water $=4.18 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$
Density (d) of water at $25^{\circ} \mathrm{C}=1.00 \mathrm{~g} \mathrm{~mL}^{-1}$
$1 \mathrm{~atm}=101.3 \mathrm{kPa}=760 \mathrm{~mm} \mathrm{Hg}$
$0^{\circ} \mathrm{C}=273 \mathrm{~K}$

4. SI prefixes, their symbols and values

SI prefix	Symbol	Value
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

5. ${ }^{1} \mathrm{H}$ NMR data

Typical proton shift values relative to $\mathrm{TMS}=0$
These can differ slightly in different solvents. Where more than one proton environment is shown in the formula, the shift refers to the ones in bold letters.

Type of proton		Chemical shift (ppm)
$\mathrm{R}-\mathrm{CH}_{3}$		0.9
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$		1.3
$\mathrm{RCH}=\mathrm{CH}-\mathrm{CH}_{3}$		1.7
$\mathrm{R}_{3}-\mathrm{CH}$		2.0
		2.0

Type of proton	Chemical shift (ppm)
	2.1
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I$)$	3-4
R-CH2-OH	3.6
	3.2
$\mathrm{R}-\mathrm{O}-\mathrm{CH}_{3}$ or $\mathrm{R}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{R}$	3.3
	2.3
	4.1
R-O-H	1-6 (varies considerably under different conditions)
$\mathrm{R}-\mathrm{NH}_{2}$	1-5
$\mathrm{RHC}=\mathrm{CH}_{2}$	4.6-6.0
	7.0
$\square-\mathrm{H}$	7.3
	8.1
	9-10
	11.5

6. ${ }^{13} \mathrm{C}$ NMR data

Type of carbon	Chemical shift (ppm)
$\mathrm{R}-\mathrm{CH}_{3}$	$8-25$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{R}$	$20-45$
$\mathrm{R}_{3}-\mathrm{CH}$	$40-60$
$\mathrm{R}_{4}-\mathrm{C}$	$36-45$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{X}$	$15-80$
$\mathrm{R}_{3} \mathrm{C}-\mathrm{NH}_{2}$	$35-70$
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{OH}$	$50-90$
$\mathrm{RC}=\mathrm{CR}^{\mathrm{R}} \mathrm{C}=\mathrm{CR}$	2
RCOOH	$75-95$

7. Infrared absorption data

Characteristic range for infrared absorption

Bond	Wave number $\left(\mathbf{c m}^{-\mathbf{1}}\right)$
$\mathrm{C}-\mathrm{Cl}$	$700-800$
$\mathrm{C}-\mathrm{C}$	$750-1100$
$\mathrm{C}-\mathrm{O}$	$1000-1300$
$\mathrm{C}=\mathrm{C}$	$1610-1680$
$\mathrm{C}=\mathrm{O}$	$1670-1750$
$\mathrm{O}-\mathrm{H}$ (acids)	$2500-3300$
$\mathrm{C}-\mathrm{H}$	$2850-3300$
$\mathrm{O}-\mathrm{H}$ (alcohols)	$3200-3550$
$\mathrm{~N}-\mathrm{H}$ (primary amines)	$3350-3500$

8. 2-amino acids (α-amino acids)

Name	
alanine	
arginine	Ala
asparagine	Arg
aspartic acid	Asn

glycine	Gly	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$
histidine	His	

isoleucine Ile

Name	Symbol	Structure
leucine	Leu	
lysine	Lys	
methionine		
phenylalanine	Phe	
proline	Pro	
serine	Ser	
threonine	Thr	
tryptophan	Trp	
tyrosine	Tyr	
valine	Val	

9. Formulas of some fatty acids

Name	Formula
Lauric	$\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{COOH}$
Myristic	$\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{COOH}$
Palmitic	$\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{COOH}$
Palmitoleic	$\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{COOH}$
Stearic	$\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COOH}$
Oleic	$\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{COOH}$
Linoleic	$\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{COOH}$
Linolenic	$\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{COOH}$
Arachidic	$\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{COOH}$
Arachidonic	$\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{COOH}$

10. Structural formulas of some important biomolecules

glycerol

deoxyribose

adenine

guanine

cytosine

thymine

phosphate
11. Acid-base indicators

Name	pH range	Colour change		$K_{\mathbf{a}}$
		Acid	Base	
Thymol blue	$1.2-2.8$	red	yellow	2×10^{-2}
Methyl orange	$3.1-4.4$	red	yellow	2×10^{-4}
Bromophenol blue	$3.0-4.6$	yellow	blue	6×10^{-5}
Methyl red	$4.2-6.3$	red	yellow	8×10^{-6}
Bromothymol blue	$6.0-7.6$	yellow	blue	1×10^{-7}
Phenol red	$6.8-8.4$	yellow	red	1×10^{-8}
Phenolphthalein	$8.3-10.0$	colourless	red	5×10^{-10}

12. Acidity constants, K_{a}, of some weak acids

Name	Formula	$K_{\mathbf{a}}$
Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$	5.6×10^{-10}
Benzoic	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	6.4×10^{-5}
Boric	$\mathrm{H}_{3} \mathrm{BO}_{3}$	5.8×10^{-10}
Ethanoic	$\mathrm{CH}_{3} \mathrm{COOH}$	1.7×10^{-5}
Hydrocyanic	HCN	6.3×10^{-10}
Hydrofluoric	HF	7.6×10^{-4}
Hypobromous	HOBr	2.4×10^{-9}
Hypochlorous	HOCl^{2}	2.9×10^{-8}
Lactic	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}
Methanoic	HCOOH^{2}	1.8×10^{-4}
Nitrous	HNO_{2}	7.2×10^{-4}
Propanoic	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$	1.3×10^{-5}

13. Molar enthalpy of combustion of some common fuels at 298 K and 101.3 kPa

Substance	Formula	State	$\Delta \boldsymbol{H}_{\mathbf{c}}\left(\mathbf{k J ~ m o l}^{-\mathbf{1}}\right)$
hydrogen	H_{2}	g	-286
carbon(graphite)	C	s	-394
methane	CH_{4}	g	-889
ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	g	-1557
propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	g	-2217
butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	g	-2874
pentane	$\mathrm{C}_{5} \mathrm{H}_{12}$	1	-3509
hexane	$\mathrm{C}_{6} \mathrm{H}_{14}$	1	-4158
octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	1	-5464
ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	g	-1409
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	1	-725
ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1	-1364
1-propanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	1	-2016
2-propanol	$\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$	1	-2003
glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	s	-2816

