



Victorian Certificate of Education 2004

SUPERVISOR TO ATTACH PROCESSING LABEL HERE

# STUDENT NUMBER Letter Figures Image: Comparison of the state of

# CHEMISTRY

## Written examination 1

Tuesday 8 June 2004

Reading time: 11.45 am to 12.00 noon (15 minutes) Writing time: 12.00 noon to 1.30 pm (1 hour 30 minutes)

## **QUESTION AND ANSWER BOOK**

## Structure of book

| Section | Number of questions | Number of questions<br>to be answered | Number of<br>marks | Suggested times<br>(minutes) |
|---------|---------------------|---------------------------------------|--------------------|------------------------------|
| Α       | 20                  | 20                                    | 20                 | 26                           |
| В       | 6                   | 6                                     | 48                 | 64                           |
|         |                     |                                       | Total 68           | 90                           |

- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers, an approved graphics calculator (memory cleared) and/or one scientific calculator.
- Students are NOT permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.

## Materials supplied

• Question and answer book of 22 pages, with a detachable data sheet in the centrefold.

## Instructions

- Remove the data sheet from the centre of this book during reading time.
- Use ONLY pencil to mark your responses in Section A. Use ONLY blue or black pen to write your responses in Section B.
- Write your **student number** in the space provided above on this page.
- All written responses must be in English.

Students are NOT permitted to bring mobile phones and/or any other electronic communication devices into the examination room.

© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2004

## SECTION A – Multiple-choice questions

| Instructions for Section A                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Answer <b>all</b> questions. Choose the response that is <b>correct</b> or that <b>best answers</b> the question.                                                                               |
| A correct answer scores 1, an incorrect answer scores 0. Marks will <b>not</b> be deducted for incorrect answers. No marks will be given if more than one answer is completed for any question. |
| USE PENCIL ONLY                                                                                                                                                                                 |
| Use pencil <b>only</b> to mark your answers to all multiple-choice questions in this section. For each question, shade the box beside the response that you have chosen as your answer.         |
| All answers must be completed like this example:                                                                                                                                                |
| The capital city of Victoria is                                                                                                                                                                 |
| A. Sydney                                                                                                                                                                                       |
| <b>B B.</b> Perth                                                                                                                                                                               |
| E C. Melbourne                                                                                                                                                                                  |
| D. Hobart                                                                                                                                                                                       |
| If you make a mistake, or wish to change your answer, <b>ERASE</b> the incorrect answer – <b>DO NOT</b> cross it out.                                                                           |

## **Question** 1

Suspicions are raised that a sample of soft drink has become accidentally contaminated with a small amount of lead in the form of  $Pb^{2+}(aq)$ .

The most suitable analytical method of testing for the presence of Pb<sup>2+</sup> in the sample is

- A. gas chromatography.
- **B**. paper chromatography.
- C. UV-visible spectroscopy.
- **D.** atomic absorption spectroscopy.

## Question 2

Ethanol is now added to some brands of petrol in order to replace some of the hydrocarbons with a renewable resource.

The most suitable analytical method of testing for the presence of ethanol in a sample of petrol is

- A gas chromatography.
- **B.** paper chromatography.
- **C.** flame tests.
- **D.** atomic absorption spectroscopy.

## Question 3

An aqueous mixture of two substances (Y and Z) is subjected to analysis by both paper chromatography and high performance liquid chromatography (HPLC). In both forms of chromatography, component Z of the mixture was bonded more strongly to the stationary phase than component Y.

In terms of  $R_f$  and  $R_t$ , where  $R_t$  is the retention time in HPLC, component Z has the

| А | A. | higher $R_{\rm f}$ | higher R <sub>t</sub> |
|---|----|--------------------|-----------------------|
| В | B. | higher $R_{c}$     | lower $R_{\star}$     |

- $\bigcirc$  C. lower  $R_{\rm f}$  higher  $\dot{R}_{\rm f}$
- **D.** lower  $R_f$  lower  $R_f$

In the 19th century, relative atomic masses (RAMs) were determined by gravimetric analysis. In a particular experiment, to determine the RAM of a metal (X), 3.27 g of X was completely reacted with oxygen to produce 4.07 g of the oxide of formula XO.

The RAM of X is

- A A. 12.8
- **B B.** 32.7
- **C.** 65.4
- **D.** 130.8

## **Question 5**

 $10^{-2}$  mole of HCl is added to exactly 1.00 L of pure water at 25°C.

The **change** in pH of the water is closest to

- A A. 10<sup>−2</sup> B B. 2
- **C C 5**
- **D D**. 7

## **Question 6**

Consider the reaction

 $MnO_2(s) + 4HCl(aq) \rightarrow Cl_2(g) + 2H_2O(l) + MnCl_2(aq)$ 

The atoms whose oxidation numbers change during this reaction are

- A A. Mn
- **B B**. Mn and Cl
- $\bigcirc$  C. Mn, Cl and O
- D. Mn, Cl, O and H

## **Question 7**

A 2 L sample of a gaseous hydrocarbon is burnt in excess oxygen. The only products of the reaction are 8 L of  $CO_2(g)$  and 10 L of  $H_2O(g)$ , all at 100°C and 1 atm pressure.

The formula of the hydrocarbon is

- **A A.** CH
- **B B**. C<sub>2</sub>H<sub>4</sub>
- C.  $C_4^2 H_{10}^4$
- **D.**  $C_8 H_{10}^{++}$

A sample of fertiliser was analysed and found to contain 80% by mass of ammonium nitrate  $(NH_4NO_3)$  and 20% by mass of potassium chloride (KCl).

The mass of nitrogen in a 1.00 kg packet of the fertiliser is

- 🔺 A. 140 g
- **■ B.** 175 g
- C. 280 g
- **D**. 350 g

## **Question 9**

A standard solution of potassium permanganate ( $KMnO_4$ ) has a concentration of 0.0240 M. It is titrated against a solution of iron (II) sulfate ( $FeSO_4$ ).

The equation for the reaction is

 $5Fe^{2+}(aq) + MnO_4^{-}(aq) + 8H^{+}(aq) \rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O(1)$ 

15.60 mL of the  $KMnO_4$  solution reacts exactly with 20.00 mL of the  $FeSO_4$  solution.

The concentration of the FeSO<sub>4</sub> solution, in M, is

- A. 0.0187
- **B B.** 0.0307
- **C.** 0.0936
- **D.** 0.1540

## **Question 10**

25.00 mL of a 0.100 M solution of HCl is added to 25.00 mL of a 0.180 M solution of NaOH.

The concentration of OH<sup>-</sup>(aq) remaining in the solution, in M, is

- A. 0.0400
- **B B.** 0.0500
- **C.** 0.0800
- **D.** 0.1000

## Question 11

Which of the following could not be a product of the reduction of sulfuric acid when it acts as an oxidant?

- A A. S
- **B B**. H<sub>2</sub>S
- $\bigcirc$  C.  $S\bar{O}_2$
- **D.**  $H_2 \hat{S}_2 O_7$

A traffic warden working at a busy city intersection becomes sleepy after a few hours work. The atmosphere at the intersection is found to contain several parts per million of carbon monoxide (CO). Carbon monoxide in the traffic warden's blood reacts according to the equation

$$HbO_2 + CO(g) \rightleftharpoons HbCO + O_2(g)$$

Hb represents haemoglobin.

On the basis of this information, the equilibrium constant for the forward reaction of this equation is

- A less than one.
- **B** greater than one.
- **C.** one.
- **D**. unable to be estimated from the information.

## **Question 13**

For the reaction

$$H_2O(1) \rightleftharpoons H^+(aq) + OH^-(aq), K_w = 10^{-14} \text{ at } 25^{\circ}C$$

55.9 kJ mol<sup>-1</sup> of heat is evolved when one mole of H<sup>+</sup>(aq) reacts with one mole of OH<sup>-</sup>(aq).

At 80°C, the  $K_{w}$  and pH for pure water is

|   |    | $K_{ m w}$                     | pН             |
|---|----|--------------------------------|----------------|
| A | A. | greater than 10 <sup>-14</sup> | less than 7    |
| В | B. | greater than 10 <sup>-14</sup> | greater than 7 |
| С | C. | less than 10 <sup>-14</sup>    | less than 7    |
| D | D. | less than 10 <sup>-14</sup>    | greater than 7 |

## Questions 14, 15 and 16 refer to the following information

NaOCl is completely dissociated in water to form Na<sup>+</sup>(aq) and OCl<sup>-</sup>(aq). In solution, OCl<sup>-</sup> hydrolyses according to the equation

 $OCI^{-}(aq) + H_2O(l) \rightleftharpoons HOCl(aq) + OH^{-}(aq)$  (1)

## **Question 14**

100 mL of pure water at constant temperature is added to a 100 mL solution of 0.10 M NaOCl.

When the solution reaches equilibrium again, the

- $\land$  **A.** [H<sup>+</sup>] has decreased.
- **B B.** pH of the solution has decreased.
- C. concentration of HOCl has increased.
- **D.** value of the equilibrium constant has halved.

## **Question 15**

If  $K_1$  is the equilibrium constant for the reaction (1) above, then the value of  $K_2$ , the equilibrium constant for the reaction

 $2OCI^{-}(aq) + 2H_2O(I) \rightleftharpoons 2HOCI(aq) + 2OH^{-}(aq)$  (2)

at the same temperature, is equal to

## **Question 16**

The HOCl produced in a solution of NaOCl can react further to produce small amounts of chlorine,  $Cl_2(aq)$ , in water according to the equation

 $HOCl(aq) + H^+(aq) + Cl^-(aq) \rightleftharpoons Cl_2(aq) + H_2O(l)$ 

Which of the following, when added to a solution of NaOCl, would **not** raise the concentration of  $Cl_2$  in the solution?

| A | A. | NaCl      |
|---|----|-----------|
| В | B. | NaOH      |
| С | С. | $H_2SO_4$ |
| D | D. | HÕCI      |

The  $K_{a}$  of hydrofluoric acid, HF, is  $6.8 \times 10^{-4}$ .

The pH of a 0.10 M solution of HF in water is closest to

- A A. 1 B B. 2
- **C C C**
- **D D**. 4
- Question 18

100 mL of 1.00 M HCl is added to a 2 g piece of limestone, CaCO<sub>3</sub>.

Which of the following will **not** increase the initial rate of this reaction?

- A. adding 150 mL of 1 M HCl in place of 100 mL of 1 M HCl
- **B.** adding 100 mL of 2 M HCl in place of 100 mL of 1 M HCl
- **C.** heating the 100 mL of 1 M HCl before adding it to the limestone
- **D.** adding 100 mL of 1 M HCl to powdered CaCO<sub>3</sub> in place of the single piece of limestone

#### **Question 19**

In a chemical reaction at constant temperature the addition of a catalyst

- A. affects the equilibrium constant.
- **B.** provides an alternative reaction pathway.
- C. increases the percentage yield at equilibrium.
- **D.** increases the fraction of molecules with more than a given kinetic energy.

#### **Question 20**

Nitrogen (II) oxide and chlorine react according to the equation

 $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g); \Delta H = -38 \text{ kJ mol}^{-1}$ 

The activation energy for the forward reaction is 62 kJ mol<sup>-1</sup>.

The activation energy of the reverse reaction, in kJ mol<sup>-1</sup>, is

| А | A. | -62 |
|---|----|-----|
| В | B. | 24  |
|   | C  | 20  |

**C C**. 38 **D D**. 100

## **SECTION B – Short-answer questions**

## **Instructions for Section B**

Answer all questions. Use only blue or black pen to write your responses.

Write your responses in the space provided. Do **NOT** respond to a question anywhere other than in the space immediately following the question. Where lines are provided under a question, the number of lines is intended to be more than sufficient for your response.

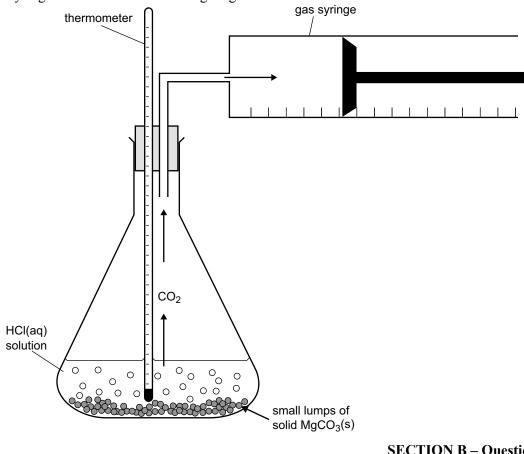
If you need more space, there is also unlined space provided for each question part.

Do NOT write in the shaded regions that border each page – no writing in that region will be marked.

To obtain full marks for your response you should

- give simplified answers, with an appropriate number of significant figures, to all numerical questions.
- show all working in your answers to numerical questions. Partial credit may be given if an incorrect answer is accompanied by details of the working.
- make sure chemical equations are balanced and that the formulas for individual substances include an
  indication of state; for example, H<sub>2</sub>(g); NaCl(s)

The main source of the element magnesium in Australia is the ore magnesite, in which magnesium is present as magnesium carbonate (MgCO<sub>3</sub>).


Calculate the percentage by mass of magnesium in magnesium carbonate. a.

1 mark

Magnesium carbonate reacts with aqueous hydrochloric acid according to the reaction b.

 $MgCO_3(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2O(l) + CO_2(g)$ 

A series of laboratory experiments was set up to study the rate of this reaction under some different conditions. The initial reaction rate was determined by measuring the rate of evolution of CO<sub>2</sub> in a gas syringe as shown in the following diagram.



**SECTION B – Question 1** – continued **TURN OVER** 

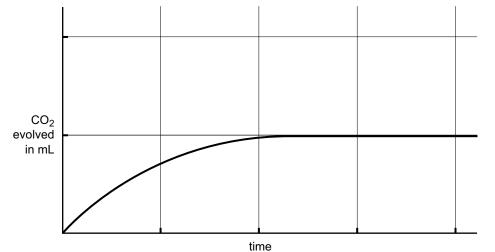
| Experiment | [HCl] (M) | Mass of<br>MgCO <sub>3</sub> (g) | Initial temp in °C | Final temp in °C | Initial rate of $CO_2$<br>evolution in<br>mL min <sup>-1</sup> |
|------------|-----------|----------------------------------|--------------------|------------------|----------------------------------------------------------------|
| 1          | 0.10      | 1.0                              | 20                 | 25               | 5                                                              |
| 2          | 0.10      | 1.0                              | 30                 | 35               | 50                                                             |
| 3          | 0.10      | 2.0                              | 20                 | 30               | 10                                                             |
| 4          | 0.20      | 1.0                              | 20                 | 25               | 20                                                             |

Four experiments were carried out as follows. In each case, the amount of HCl present was in excess.

i. Is the reaction exothermic or endothermic? Explain how you can tell from these results.

**ii.** Considering experiments 1 and 2, explain why the increase in the initial temperature has raised the reaction rate.

1 mark


**SECTION B – Question 1** – continued

iii. Considering experiments 1 and 3, explain why the greater mass of magnesium carbonate would have increased the reaction rate.

## 1 mark

iv. Considering experiments 1 and 4, explain why the higher concentration of HCl would have increased the reaction rate.

v. Results from experiment 1 are plotted on the sketch graph below. On the same axes, sketch the results from experiment 3.



2 marks

Total 7 marks

SECTION B – continued TURN OVER

## CHEM EXAM 1

## Question 2

- **a.** Give the systematic names of the following organic compounds.
  - i.
     CH<sub>3</sub>CHOHCH<sub>3</sub>
     1 mark

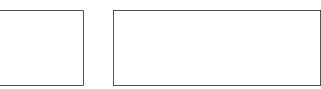
     ii.
     HCOOH
     1 mark

     iii.
     CH<sub>3</sub>CH<sub>2</sub>CHCICH<sub>3</sub>
     1 mark

     iv.
     CH<sub>3</sub>CH<sub>2</sub>COOCH<sub>2</sub>CH<sub>3</sub>
     1 mark

     1 mark
     1 mark
     1 mark
- **b.** Complete the following chemical equation by giving relevant structural formulas in the boxes provided.

| $C_2H_6 + Cl_2 \rightarrow$ | + |  |
|-----------------------------|---|--|
|-----------------------------|---|--|


1 + 1 = 2 marks

## **SECTION B – Question 2** – continued

c. A representation of a section of a polymer chain is

-O-CH<sub>2</sub>-CH<sub>2</sub>-O-CO-CH<sub>2</sub>-CO-O-CH<sub>2</sub>-CH<sub>2</sub>-O-CO-CH<sub>2</sub>-CO-O-

i. In the two boxes provided, give the structures of the two different monomers needed to make this polymer.



2 marks

**ii.** In the following box, give the formula of the other molecule formed when the monomers combine to form the polymer.



1 mark

d. A representation of a section of a polymer chain is

In the following box, give the structure of the monomer from which the polymer is made.



1 mark Total 10 marks

SECTION B – continued TURN OVER

NOT WRITE HERE

Experiments were carried out on several different cracking reactions of butane (semi-structural formula of butane is  $CH_3CH_2CH_2CH_3$ ). The following series of different possible reactions of butane were observed under a variety of different conditions.

$$\begin{array}{rcl} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3} & \rightarrow & \mathrm{V} + \mathrm{W} \\ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3} & \rightarrow & \mathrm{X} + \mathrm{W} \\ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3} & \rightarrow & \mathrm{Y} + \mathrm{Z} \end{array}$$

Molecules V, W, X, Y and Z were further investigated and the following three items of information were obtained.

 $V + Cl_2 \rightarrow CH_3CHClCHClCH_3$ 

X has the same molecular formula as V but has a different structure

 $Y + H_2O \rightarrow CH_3CH_2CH_2OH$ 

On the basis of all the information provided, give the semi-structural formulas of each of the following molecules.

| i.   | V            | -             |
|------|--------------|---------------|
|      |              |               |
|      |              | 1 mark        |
| ii.  | W            |               |
|      |              |               |
|      |              | 1 mark        |
|      |              |               |
| iii. | X            | -             |
|      |              |               |
|      |              | 1 mark        |
| iv.  | Y            | -             |
|      |              |               |
|      |              | 1 mark        |
| v.   | Ζ            |               |
|      |              | -             |
|      |              | 1 mark        |
|      |              | Total 5 marks |
|      |              |               |
|      |              |               |
|      | ND continued |               |

- **a.** In order to help prevent tooth decay, fluoride ions at a level of 0.9 mg  $L^{-1}$  of  $F^-$  are added to Melbourne's public water supplies. The fluoride ions are obtained by adding sodium fluoride (NaF) to the water.
  - i. Calculate the mass of sodium fluoride in mg that must be present in one litre of water to produce a concentration of fluoride ions of 0.90 mg  $L^{-1}$ .

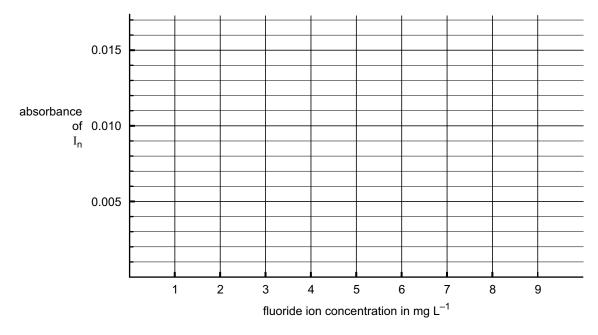
ii. What mass of sodium fluoride, in kilogram, must be added to a 750 ML reservoir (1 ML =  $10^{6}$  L) to produce a concentration of fluoride ions of 0.90 mg L<sup>-1</sup>?

iii. Calculate the number of fluoride ions swallowed by a person who drank one litre of water from the reservoir.

2 marks

SECTION B – Question 4 – continued TURN OVER DO NOT WRITE HERE

**b.** One method of determining the concentration of fluoride ions in water uses a red-coloured indicator,  $I_n$ , that reacts with fluoride ions in solution to give a colourless product. The reaction can be represented as


| I <sub>n</sub> (aq) | +   | F <sup>-</sup> (aq) | $\rightarrow$ | FI <sub>n</sub> <sup>-</sup> (aq) |
|---------------------|-----|---------------------|---------------|-----------------------------------|
| red-coloured indica | tor | colourless          |               | colourless                        |

A calibration curve was prepared using five different aqueous solutions of sodium fluoride, each of known ion concentration. Q mole of  $I_n$  is then added to 25.00 mL of each of five NaF solutions and an NaF solution of unknown concentration. The intensity of the red  $I_n$  colour of each of the mixtures is then determined using a UV-visible spectrophotometer.

The measured absorbances are given in the following table.

| Fluoride ion concentration in mg L <sup>-1</sup> | Absorbance of I <sub>n</sub> |
|--------------------------------------------------|------------------------------|
| 1.00                                             | 0.0130                       |
| 2.00                                             | 0.0110                       |
| 3.00                                             | 0.0090                       |
| 4.00                                             | 0.0070                       |
| 5.00                                             | 0.0050                       |
| unknown NaF sample                               | 0.0120                       |

i. Draw a calibration curve on the graph provided.



1 mark

ii. Why does the absorbance fall with increasing fluoride ion concentration?

| 1 mark Use your calibration curve to determine the fluoride ion concentration of the unknown NaF sample in mg $L^{-1}$ . |
|--------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
| 1 mark What was the value of $Q$ ?                                                                                       |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |

2 marks Total 10 marks

iii.

iv.

#### CHEM EXAM 1

#### 18

## **Question 5**

The industrial production of sulfuric acid can be described as a four-stage process beginning with the burning of raw sulfur with oxygen.

#### Stage 1 The burning of sulfur a.

Give the equation for the burning of sulfur in oxygen.

#### Stage 2 The oxidation of sulfur from the +4 to the +6 oxidation state b.

i. Give the equation for this reaction.

What goes wrong in the industrial process if the temperature for this stage of the process is too high, ii. and why?

## 1 mark

1 mark

| iii.  | What goes wrong in the industrial process if the temperature for this stage of the process is too lov<br>and why? |       |
|-------|-------------------------------------------------------------------------------------------------------------------|-------|
| Stag  | e 3 The conversion of S in the +6 oxidation state from a gaseous to a liquid fo                                   | 1 mar |
| the - | <b>-6 form of the gas with a suitable solvent</b><br>Give the chemical reaction for this process.                 | -     |
| ii.   | Explain why water is not used as the solvent for this process.                                                    | 1 mar |
|       |                                                                                                                   |       |
| Stag  | e 4 The production of liquid sulfuric acid the chemical reaction for this process.                                | 1 mai |

Total 8 marks

SECTION B – continued TURN OVER

## Question 6

 $CO_2$  is added to 1.00 L of pure water at 25°C in a pressurised bottle. The pressure of  $CO_2$  above the water was raised to 3.00 atm and the gaseous  $CO_2$  came to equilibrium with the  $CO_2$  dissolved in the water. At equilibrium, the mass of  $CO_2$  dissolved in the water was 5.00 g.

**a.** The equilibrium constant for this reaction, in atm  $M^{-1}$ , can be written as

$$K_{\rm n} = \frac{p(\rm CO_2, g)}{[\rm CO_2(aq)]}$$

where  $p(CO_2)$  represents the pressure of  $CO_2$ .

Calculate the value of this equilibrium constant at 25°C.

2 marks

**b.** 500 mL of the aqueous solution of  $CO_2$  is heated to 30°C and then opened to the atmosphere so that effectively all the  $CO_2$  in the aqueous solution escapes into the gas phase. Calculate, in litre, the volume of  $CO_2$  that would be evolved at 1.00 atm pressure and 30°C.



4 marks

SECTION B – Question 6 – continued TURN OVER c. Dissolved  $CO_2$  acts as a weak acid in water according to the equation

$$CO_2(aq) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

and the acidity constant of  $\mathrm{CO}_2$  in water at 25°C is given by

$$K_{\rm a} = \frac{\left[{\rm H}^+\right] \left[{\rm HCO_3}^-\right]}{\left[{\rm CO_2}\right]} = 4.5 \times 10^{-7} {\rm M}^2$$

Some  $CO_2$  is added to a solution of NaHCO<sub>3</sub> at 25°C. In the solution, the concentration of the hydrogen carbonate ions (HCO<sub>3</sub><sup>-</sup>) is 0.050 M and the CO<sub>2</sub> concentration is 0.0020 M. Calculate the pH of the solution.

2 marks Total 8 marks

END OF QUESTION AND ANSWER BOOK

DO NOT WRITE HERE