SPECIFIC INFORMATION

Section A - Multiple-choice questions

This table indicates the approximate percentage of students choosing each distractor. The correct answer is the shaded alternative.

Question1	A	B	C	D	Question14	A	${ }_{\%}{ }^{C}$		D
			\%						
	78	7	9	6		81	15	3	1
2	9	5	81	5	15	5	1	1	93
3	26	55	5	14	16	6	21	54	19
4	19	9	50	22	17	2	10	77	11
5	54	31	10	5	18	3	21	23	53
6	6	91	2	1	19	48	21	27	4
7	9	3	79	9	20	10	24	13	53
8	6	51	34	9	21	1	6	2	91
9	9	29	7	55	22	16	76	6	2
10	9	10	70	11	23	11	6	76	7
11	3	14	61	21	24	11	55	15	19
12	5	3	90	2	25	15	13	59	13
13	11	48	35	6					

Section B - Short-answer questions

For each question, an outline answer (or answers) is provided in the response column. In some cases the answer given is not the only answer that could have been awarded marks.

Comments on student performance (where appropriate) follow the answers for each part of the question (and are in italics).

Question	Marks	\%	Response
Question 1	a 0/1 1/1 (Average mark 0.73)	$\begin{aligned} & 27 \\ & 73 \end{aligned}$	A gamete of a cat would contain 19 chromosomes.
	bi--ii 0/2 1/2 2/2 (Average mark 1.21)	$\begin{aligned} & 12 \\ & 54 \\ & 34 \end{aligned}$	bi The phenotype of an organism is the characteristics of an organism (physical, biochemical and behavioural) which are the result of the genotype and the effect of the environment. Students need to be reminded that responses such as the appearance or the physical appearance are not at a standard expected of Year 12 Biology students. bii The cat would still have a normal phenotype because it still has the same amount of DNA or the cat has not lost or gained any DNA or chromosome, or no genes have been lost.
	c 0/2 1/2 2/2 (Average mark 0.41)	$\begin{aligned} & 71 \\ & 17 \\ & 12 \end{aligned}$	Chromosome make-up of sperm type 3 one translocation 9/18 chromosome Chromosome make-up of sperm type 4 one chromosome 9 This question tested student understanding of meiosis. Students needed to think about how chromosomes line up on the spindle during the first stages of meiosis. Many incorrect responses included either two number 9 chromosomes or two number 18 chromosomes in the one sperm.

	b 0/1 1/1 (Average mark 0.30)	$\begin{aligned} & 70 \\ & 30 \end{aligned}$	The genes for body colour and sex determination are 6 map units apart. The percentage of recombinant offspring corresponds to the number of map units separating the two genes. In this case there was a total of 6% recombinant offspring (black females and bronze males) indicating that the genes are 6 map units apart.
	ci-ii 0/2 1/2 2/2 (Average mark $0.26)$	$\begin{aligned} & 86 \\ & 1 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline \mathbf{c i} \\ & \underline{\mathrm{Bm}} \\ & \mathrm{Bm} \\ & \mathbf{c i i} \\ & \frac{\mathrm{bM}}{\mathrm{bm}} \end{aligned}$ The stem of the question stated that the genes for body colour and sex determination are linked. Many students did not use the correct notation for linkage. Others showing correct notation failed to show the correct combination of alleles on the chromosomes. $\text { A common incorrect response was } \frac{\mathrm{bb}}{\mathrm{Mm}} \text {. }$
	d 0/1 1/1 (Average mark 0.47)	$\begin{aligned} & 53 \\ & 47 \end{aligned}$	The offspring would be black males and black females. The question referred to both the sex of the insect and the body colour of the insect. Both of these should have been mentioned in the answer.
Question 4	a 0/1 1/1 (Average mark $0.84)$	$\begin{aligned} & 16 \\ & 84 \end{aligned}$	part of the template strand A \mathbf{A} \mathbf{A} \mathbf{G} \mathbf{T} \mathbf{A} \mathbf{C} \mathbf{T} \mathbf{G} \mathbf{C} \mathbf{G} \mathbf{C} complementary strand \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{C} \mathbf{A} \mathbf{T} \mathbf{G} \mathbf{A} \mathbf{C} \mathbf{G} \mathbf{C} \mathbf{G}
	b 0/1 1/1 (Average mark $0.79)$	$\begin{aligned} & 21 \\ & 79 \end{aligned}$	Adenine.
	c 0/1 1/1 (Average mark 0.69)	$\begin{aligned} & 31 \\ & 69 \end{aligned}$	mRNA or messenger RNA is produced during transcription.
	$\begin{array}{\|l\|} \hline \text { di-diii } \\ 0 / 3 \\ 1 / 3 \\ 2 / 3 \\ 3 / 3 \\ \text { (Average } \\ \text { mark } \\ 2.13) \\ \hline \end{array}$	$\begin{aligned} & 14 \\ & 12 \\ & 22 \\ & 52 \end{aligned}$	di Ribosome dii Translation diii A polypeptide or protein.
	e 0/1 1/1 (Average mark 0.40)	$\begin{aligned} & 60 \\ & 40 \end{aligned}$	asp (aspartic acid) is replaced by glu (glutamic acid) or asp to glu

Question 5	a 0/2 1/2 2/2 (Average mark $0.67 \text {) }$	$\begin{aligned} & 47 \\ & 38 \\ & 15 \end{aligned}$	The polymerase enzyme catalyses the production of a new strand of DNA or is involved in making multiple copies of DNA or amplification of DNA and DNA polymerase replicates the DNA by extending from the primer or by complementary base pairing or by using the original DNA as a template. Some students incorrectly identified the enzyme and discussed the role of another enzyme. Many other responses gave one part of the expected answer. Students need to be reminded to use the number of marks allocated to the question as an indication of the depth required in their answer.
	b 0/2 1/2 2/2 (Average mark $0.95)$	$\begin{aligned} & 37 \\ & 31 \\ & 32 \end{aligned}$	A DNA fragment will move according to its charge and molecular weight (size) or DNA is negatively charged and moves to the positive pole; smaller DNA fragments move further or faster than larger fragments.
	c 0/1 1/1 (Average mark $0.30)$	$\begin{aligned} & 70 \\ & 30 \end{aligned}$	There is only one band in lane 2 because individual 2 is homozygous, the others on the gel are heterozygous or the two fragments of DNA are the same size or the number of repeats in the two fragments is the same. Students should be able to read results from a gel and make appropriate conclusions. Many find this a difficult task, but this can be improved by attention to practical experience in class.
	d 0/1 1/1 (Average mark $0.37)$	$\begin{aligned} & 63 \\ & 37 \end{aligned}$	There are 5 different alleles at the HUMTHO1 locus represented on the gel.
	e 0/1 1/1 (Average mark 0.77)	$\begin{aligned} & 23 \\ & 77 \end{aligned}$	DNA piece A has the greater number of the 4 base repeat sequence. The greater the molecular weight of the sample the smaller distance the sample will move from the loading well.
	f 0/1 1/1 (Average mark 0.38)	$\begin{aligned} & 62 \\ & 38 \end{aligned}$	The bands on the gel for suspect 5 match the sample of blood found on the victim, which was not the victim's blood (lane 3). Students could not be given a mark for the correct identification of suspect 5 . The mark was awarded for the explanation as to why suspect 5 appears to have committed the assault.
Question 6	a $0 / 2$ 1/2 2/2 (Average mark $0.5)$	$\begin{aligned} & 59 \\ & 31 \\ & 10 \end{aligned}$	Drosophila, since it has the highest heterozygosity. Therefore, at each locus there are at least two alleles, which may result in two or more phenotypes, or heterozygotes produce more genotypes and phenotypes. The most common incorrect response was the elephant. Many students who correctly identified Drosophila could not give an adequate explanation.
	b 0/2 1/2 2/2 (Average mark $0.87)$	$\begin{aligned} & 44 \\ & 25 \\ & 31 \end{aligned}$	There may be a change in a selection pressure and if no variation exists all individuals within the population will respond to the change in the same way. This means that many of the individuals within the population may die. Students were awarded marks if they used a particular example, such as: 'If a disease infects the group the individuals in the population are likely to be equally susceptible. The disease may kill all individuals within the population.'

	c 0/2 1/2 2/2 (Average mark 0.59)	$\begin{aligned} & 59 \\ & 22 \\ & 19 \end{aligned}$	The founder effect involves a small group founding a new population and the allele frequency in the founding group may not represent the frequencies in the original population. Many students did not understand the founder effect concept.
Question 7	a 0/4 1/4 2/4 3/4 4/4 (Average mark 1.48)	$\begin{aligned} & 34 \\ & 19 \\ & 22 \\ & 16 \\ & 9 \end{aligned}$	The process that led to the increase in the percentage of resistant rats included warfarin resistant rats existing in the population before the use of warfarin and when warfarin is used non-resistant rats are killed and warfarin resistant rats survive to reproduce, and pass on the allele for resistance or warfarin resistance is inherited and so is passed on to next generation and over several generations the proportion of warfarin resistant rats increases. Students who could clearly express their ideas in a logical way were more likely to be awarded full marks. Students must be encouraged to formulate answers to questions that require a detailed account of a concept/s.
	b 0/2 1/2 2/2 (Average mark $0.32)$	$\begin{aligned} & 78 \\ & 12 \\ & 10 \end{aligned}$	From the graph it can be seen that the percentage of resistant rats decreases when the use of warfarin is discontinued (years 3 and 4) therefore resistant rats are at a disadvantage in a non warfarin environment or resistant rats are less fit in a non warfarin environment or non-resistant rats are at a selective advantage in a non warfarin environment. The question asked students to use the data in figure 13. Therefore, students were expected to explain how the data was used in arriving at their conclusion, for example more successful answers specifically mentioned that the number of rats decreased in years 3 and 4.
Question 8	a 0/2 1/2 2/2 (Average mark $0.84)$	$\begin{aligned} & 30 \\ & 56 \\ & 14 \end{aligned}$	The populations of red-necked wallabies in Tasmania have not been isolated long enough from the populations of red-necked wallabies on the mainland for sufficient genetic differences to accumulate and the populations of the red-necked wallabies occupy similar habitats so similar selection pressures or a specific example of a selection pressure. Students could score 1 mark if they gave a specific example of a similar selection pressure but were not awarded 2 marks if they gave two examples of similar selection pressures.
	b 0/2 1/2 2/2 (Average mark 1.11)	$\begin{aligned} & 24 \\ & 41 \\ & 35 \end{aligned}$	The Eastern Quoll may be extinct on the mainland of Australia because a disease may have spread through the mainland populations and killed all quolls or a predator may have been introduced on the mainland which killed all of the quolls or the quoll habitat may have been destroyed when humans cleared much of the mainland for farming. One-word answers such as 'hunting' or 'predators' are unlikely to be awarded marks. The space provided for the answers indicated the detail needed in the response.

