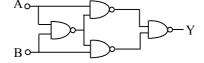
Part A - PHYSICS

- Q.1 Two electric bulbs marked 25 W - 220 V and 100 W - 220 V are connected in series to a 440 V supply. Which of the bulbs will fuse ?
- (1) 100 W (2) 25 W (3) neither (4) both Ans.[2] We have $R = \frac{V^2}{P}$ $R_{25} > R_{100}$ ŵŴ ŴŴ R_{100} 440 V $V_1 > 220 V$ hence 25 W bulb gets fused.
- Q.2 A boy can throw a stone up to a maximum height of 10 m. The maximum horizontal distance that the boy can throw the same stone up to will be -

(4) $20\sqrt{2}$ m (2) $10\sqrt{2}$ m (1) 10 m (3) 20 m

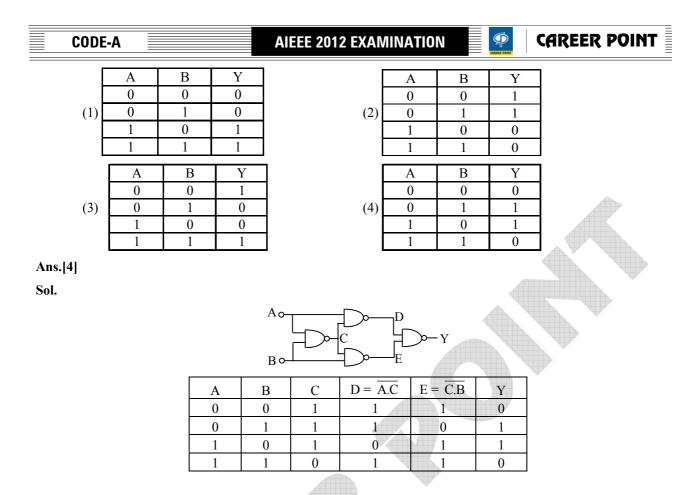
Ans.[3]

Sol.


 $H = \frac{u^2 \sin^2 \theta}{2g} \quad (\theta = 90^\circ)$ Sol.

 $R = \frac{u^2 \sin 2\theta}{g}$

 $R_{max} = \frac{u^2}{g} = 20 \text{ m}$


 $\frac{u^2}{2g} = 10 \text{ m}$

Q.3 Truth table for system of four NAND gates as shown in figure is-

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

Q.4 This question has Statement-1 and Statement-2. Of the four choices given after the Statements, choose the one that best describes the two Statements.

Statement 1 : Davisson : Germer experiment established the wave nature of electrons.

Statement 2 : If electrons have wave nature, they can interfere and show diffraction.

(1) Statement 1 is true, Statement 2 is false

- (2) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation for Statement 1
- (3) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1
- (4) Statement 1 is false, Statement 2 is true.

Ans. [2]

- Sol. Devision germer experiment show's wave nature of particle.
- Q.5 In Young's double slit experiment, one of the slit is wider than other, so that the amplitude of the light from one slit is double of that from other slit. If I_m be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by -

$(1) \ \frac{\mathrm{I_m}}{3} \left(1 + 2\cos^2\frac{\phi}{2} \right)$	$(2) \ \frac{\mathrm{I_m}}{5} \left(1 + 4\cos^2\frac{\phi}{2} \right)$
$(3) \ \frac{\mathrm{I_m}}{9} \left(1 + 8\cos^2\frac{\phi}{2} \right)$	$(4) \ \frac{I_m}{9} (4 + 5\cos\phi)$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

Þ

Ans.[3]

Sol. Let $A_1 = A_0$ Then $A_2 = 2A_{-0}$ $I \propto A^2$ Intensity $I_1 = I_0$ Hence $I_2 = 4I_0$

We have

$$\mathbf{I} = \mathbf{I}_0 + 4\mathbf{I}_0 + 2\sqrt{\mathbf{I}_0 \times 4\mathbf{I}_0} \cos \phi$$

For I_{max} , $\cos \phi = 1$

Hence

$$I_m = 9I_0$$

r
$$I_0 = \frac{I_m}{9}$$

or
$$I_0 = -$$

When phase difference is ϕ then

$$I = I_0 + 4I_0 + 2\sqrt{4I_0^2} \cos \phi = 5I_0 + 4I_0 \cos \phi$$
$$I = \frac{I_m}{9} (1 + 8 \cos^2 \frac{\phi}{2})$$

.

Q.6 If a simple pendulum has significant amplitude (up to a factor of 1/e of original) only in the period between t = 0 s to $t = \tau s$, then τ may be called the average life of the pendulum. When the spherical bob of the pendulum suffers a retardation (due to viscous drag) proportional to its velocity, with 'b' as the constant of proportionality, the average life time of the pendulum is (assuming damping is small) in seconds-

(1) b
(2)
$$\frac{1}{b}$$
 (3) $\frac{2}{b}$ (4) $\frac{0.693}{b}$
Ans. [3]
Sol. In damped oscillation
we have, amplitude
 $A = A_0 e^{\frac{-b}{2m}t}$
at $t = T$, $A = \frac{A_0}{e}$
 $\frac{A_0}{e} = A_0 e^{\frac{-b}{2m}t}$
 $\frac{b}{2m}T = 1$
 $T = \frac{2}{b}$ (Taking m = 1)

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CAREER POINT

P

Q.7 This question has Statement-1 and Statement-2. Of the four choices given after the Statements, choose the one that best describes the two Statements.

If two springs S_1 and S_2 of force constants k_1 and k_2 , respectively, are stretched by the same force, it is found that more work is done on spring S_1 than on spring S_2 .

Statement 1 : If stretched by the same amount, work done on S_1 , will be more than that on S_2 .

Statement 2 : $k_1 < k_2$

(1) Statement 1 is true, Statement 2 is false

(2) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation for Statement 1

- (3) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1
- (4) Statement 1 is false, Statement 2 is true.

Ans.[4]

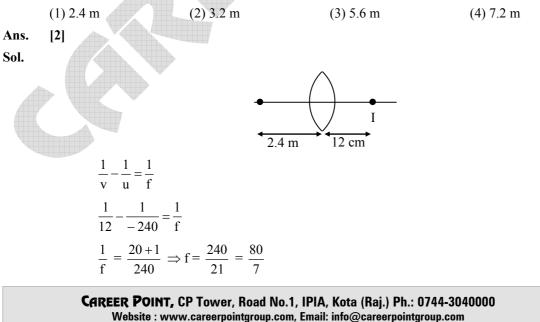
Sol.

$$F = k_1 x_1$$

$$x_1 = \frac{F}{k_1}$$

$$\frac{1}{2} k_1 \cdot \frac{F^2}{k_1^2} = W_1$$

$$\frac{1}{2} k_2 \cdot \frac{F^2}{k_2^2} = W_2$$


$$W_1 > W_2$$

$$k_1 < k_2$$

$$W_1' = \frac{1}{2} k_1 x_0^2, \ W_2' = \frac{1}{2} k_2 x_0^2$$

$$\overline{W_2' > W_1'}$$

Q.8 An object 2.4 m in front of a lens forms a sharp image on a film 12 cm behind the lens. A glass plate 1 cm thick, of refractive index 1.50 is interposed between lens and film with its plane faces parallel to film. At what distance (from lens) should object be shifted to be in sharp focus on film ?

.....(1)

AIEEE 2012 EXAMINATION

CAREER POINT

Þ

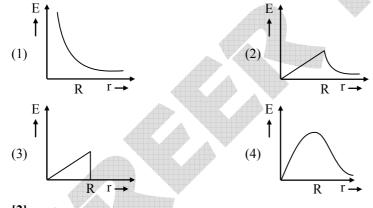
After slab is inserted normal shifting of slab, $\Delta t = t \left(1 - \frac{1}{\mu}\right)$

$$\Delta t = 1 \left(1 - \frac{2}{3} \right) = \frac{1}{3} \,\mathrm{cm}$$

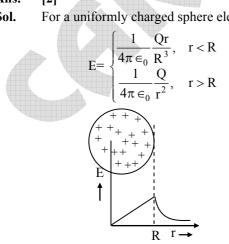
To form the image at same position

due to lens only image should be formed at, $v' = \left(12 - \frac{1}{3}\right) = \frac{35}{3}$ cm

$$f = \frac{80}{7}$$


$$\frac{3}{35} - \frac{1}{u} = \frac{7}{80}$$

$$\frac{1}{u} = \frac{3}{35} - \frac{7}{80} = \frac{240 - 245}{2800} = \frac{-5}{2800} = -560 \text{ cm}$$


$$= 5.6 \text{ m}$$

hence shifting of object = 5.6 - 2.4 = 3.2 m

Q.9 In a uniformly charged sphere of total charge Q and radius R, the electric field E is plotted as a function of distance from the centre. The graph which would correspond to the above will be-

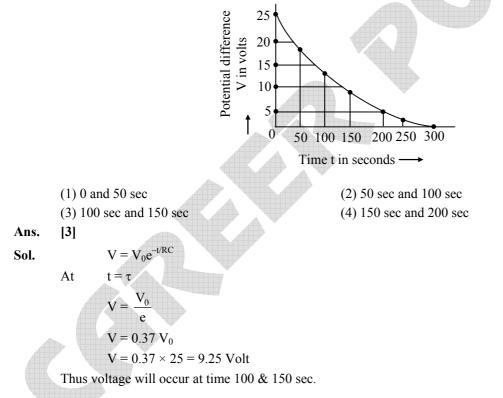
Ans. [2] For a uniformly charged sphere electric field Sol.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-A	AIEEE 2012 EXAMINATION		CAREER POINT
Q.10	force. When a current is passe aluminium plate is placed near t (1) induction of electrical charge (2) shielding of magnetic lines of	of force as aluminium is a paramagneti the aluminium plate giving rise to ele	g; it is very	difficult to stop. But if an
Ans. Sol.	[3] Due to change in magnetic fl electromagnetic damping.	ux, eddy current flows on the surfa	ace of alum	ninium plate which acts as
Q.11	Main scale reading : 58.5 degree Vernier scale reading : 09 divisi Given that 1 division on main s match with 29 divisions of the n (1) 58.77 degree	ons cale corresponds to 0.5 degree. Total nain scale. The angle of the prism fro (2) 58.65 degree	divisions o	n the vernier scale is 30 and
Ans.[2	(3) 59 degree 2]	(4) 58.59 degree		
Sol.	L.C. = 1 M.S.D 1 V.S.D. = $0.5^{\circ} - \left(\frac{29}{30}\right) \times 0.5$ = $\frac{1}{300} \times 0.5^{\circ}$ = $\frac{1}{60}$ (degree) ∴ V.S.R. = No. of division Reading = M.S.R. + V.S.R. = 58	$n \times LC = 9 \times \frac{1}{60} = 0.15$ 8.5 + 0.15 = 58.65°		
Q.12		f two masses m ₁ and m ₂ which are set g Bohr's rule of angular momentum quantum (2) $\frac{2n^2h^2}{(m_1 + m_2)r^2}$ (4) $\frac{(m_1 + m_2)^2n^2}{2m_1^2m_2^2r^2}$	iantization,	
Ans.	[3]			
Sol.	$m_1 \qquad m_2$ $m_1 \qquad m_2$ Reduced mass = $\frac{m_1m_2}{m_1 + m_2}$			
	CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 6 / 39 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com 6 / 39			

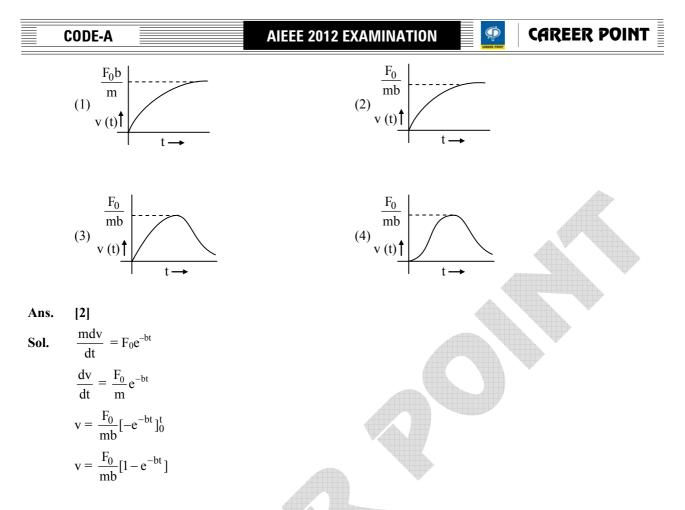
Þ

$$L = \frac{nh}{2\pi}$$


so rotational kinetic energy = $\frac{L^2}{2I}$

$$= \frac{n^2 h^2}{4\pi^2 \left[2 \times \frac{m_1 m_2}{m_1 + m_2}\right] r^2}$$
$$= \frac{n^2 h^2 (m_1 + m_2)}{2 m_1 m_2 r^2}$$

In question instead of h, \hbar should be given :


$$\hbar = \frac{h}{2\pi}$$

Q.13 The figure shows an experimental plot for discharging of a capacitor in an R-C circuit. The time constant τ of this circuit lies between -

Q.14 A particle of mass m is at rest at the origin at time t = 0. It is subjected to a force $F(t) = F_0 e^{-bt}$ in the x-direction. Its speed v(t) is depicted by which of the following curves ?

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

Q.15 Two cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 , respectively. Their speeds are such that they make complete circles in the same time t. The ratio of their centripetal acceleration is-

(1) $m_1 : m_2$ (3) 1 : 1 **Ans.** [2] **Sol.** $\frac{\omega^2 r_1}{\omega^2 r_2} = \frac{r_1}{r_2}$ (2) $r_1 : r_2$ (4) $m_1 r_1 : m_2 r_2$

Q.16 A radar has a power of 1 kW and is operating at a frequency of 10 GHz. It is located on a mountain top of height 500 m. The maximum distance upto which it can detect object located on the surface of the earth (Badius of earth = 6.4×10^6 m) is-

	(Radius of earth -6.4×10^{-111} m) is-			
	(1) 16 km	(2) 40 km	(3) 64 km	(4) 80 km
Ans.	[4]			
Sol.	$d = \sqrt{2hR}$			
	$= \sqrt{2 \times 500 \times 6.4 \times 10^6}$	m		
	= 80,000 m			
	= 80 km			

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

AIEEE 2012 EXAMINATION

CAREER POINT

P

Q.17 Assume that a neutron breaks into a proton and an electron. The energy released during this process is : (Mass of neutron = 1.6725×10^{-27} kg, Mass of proton = 1.6725×10^{-27} kg, Mass of electron = 9×10^{-31} kg) (1) 7.10 MeV (2) 6.30 MeV (3) 5.4 MeV (4) 0.73 MeV

Ans. []

Sol. Energy released = $(9 \times 10^{-31}) (3 \times 10^8)^2$ = $81 \times 10^{-15} \text{ J}$ = $\frac{81 \times 10^{-15}}{1.6 \times 10^{-13}} \text{ MeV}$

$$=\left(\frac{0.81}{1.6}\right)$$
 MeV

Q.18 This question has Statement-1 and Statement-2. Of the four choices given after the Statements, choose the one that best describes the two Statements.

An insulating solid sphere of radius R has a uniformly positive charge density ρ . As a result of this uniform charge distribution there is a finite value of electric potential at the centre of the sphere, at the surface of the sphere and also at a point out side the sphere. The electric potential at infinity is zero.

Statement 1 : When a charge 'q' is taken from the centre to the surface of the sphere, its potential energy

changes by
$$\frac{qp}{3 \in 0}$$
.

Statement 2 : The electric field at a distance r (r < R) from the centre of the sphere is $\frac{\rho r}{3\epsilon_0}$.

(1) Statement 1 is true, Statement 2 is false

(2) Statement 1 is false, Statement 2 is true.

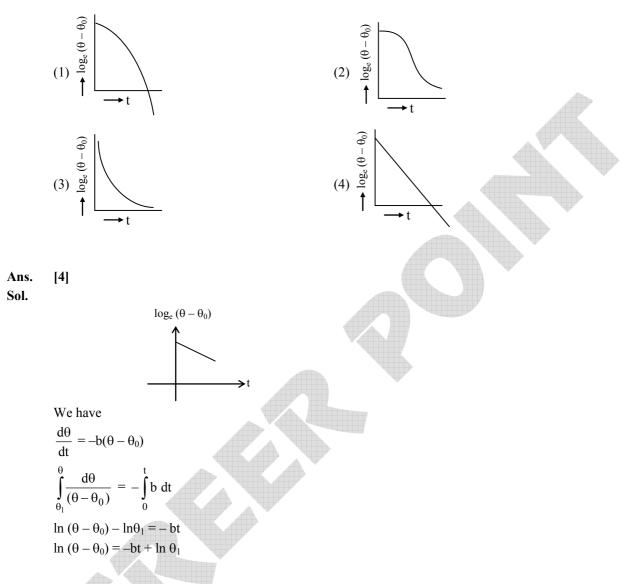
- (3) Statement 1 is true, Statement 2 is true, Statement 2 is the correct explanation for Statement 1
- (4) Statement 1 is true, Statement 2 is true, Statement 2 is not the correct explanation of Statement 1

Ans. [2]

Sol. At internal point

 $E = \frac{1}{4\pi \epsilon_0} \frac{Q}{R^3} r$ $E = \frac{\rho r}{3\epsilon_0}$

Charge in electric potential energy $|\Delta U| = q \int_{0}^{\infty} E dr$


$$|\Delta U| = \frac{qR^2\rho}{6\epsilon_0}$$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CAREER POINT

P

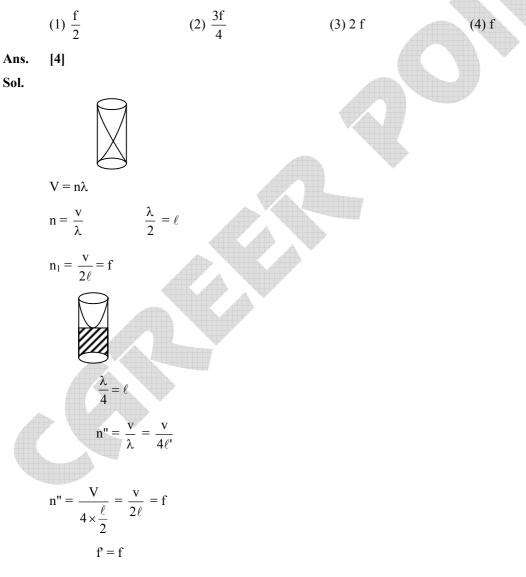
Q.19 A liquid in a beaker has temperature $\theta(t)$ at time t and θ_0 is temperature of surroundings, then according to Newton's law of cooling the correct graph between $\log_e (\theta - \theta_0)$ and t is-

Q.20 Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are 3 % each, then error in the value of resistance of the wire is-

(1) zero (2) 1 % (3) 3 % (4) 6 % Ans. [4] Sol. $R = \frac{V}{I}$ $\frac{dR}{R} \times 100 = \frac{dV}{V} \times 100 + \frac{dI}{I} \times 100$ = 3 % + 3 % = 6 %

> **CAREER POINT,** CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

AIEEE 2012 EXAMINATION


CAREER POINT

P

- Q.21 The mass of a spaceship is 1000 kg. It is to be launched from the earth's surface out into free space. The value of 'g' and 'R' (radius of earth) are 10 m/s² and 6400 km respectively. The required energy for this work will be-
 - (1) 6.4×10^8 Joules (2) 6.4×10^9 Joules (3) 6.4×10^{10} Joules (4) 6.4×10^{11} Joules
- Ans. [3]
- Sol. Energy required

$$= \frac{GMm}{R} = \frac{GM}{R^2}.mR = 10 \times 1000 \times 6400000 \text{ J} = 6.4 \times 10^{10} \text{ J}$$

Q.22 A cylindrical tube, open at both ends, has a fundamental frequency, f, in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of the air-column is now -

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

AIEEE 2012 EXAMINATION

CAREER POINT

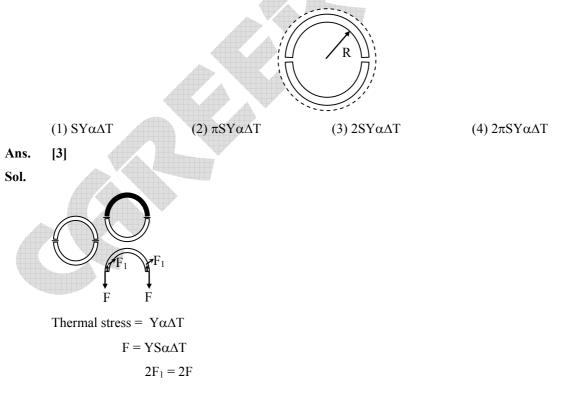
Q.23 A thin liquid film formed between a U-shaped wire and a light slider supports a weight of 1.5×10^{-2} N (see figure). The length of the slider is 30 cm and its weight negligible. The surface tension of the liquid film is-

 $(1) 0.1 \text{ Nm}^{-1}$

(3) 0.025 Nm^{-1}

(4) 0.0125 Nm⁻¹

Þ

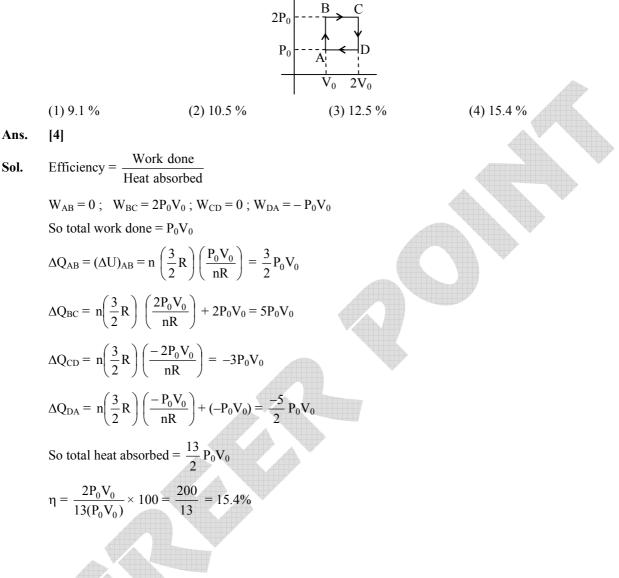

Ans. [3]

Sol. $2T\ell = W$

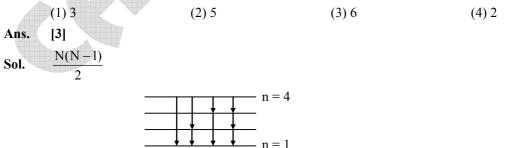
 $T = \frac{W}{2\ell} = \frac{1.5 \times 10^{-2}}{2 \times 0.3} = 0.025 \text{ Nm}^{-1}$

 $(2) 0.05 \text{ Nm}^{-1}$

Q.24 A wooden wheel of radius R is made of two semicircular parts (see figure). The two parts are held together by a ring made of a metal strip of cross sectional area S and length L. L is slightly less than $2\pi R$. To fit the ring on the wheel, it is heated so that its temperature rises by ΔT and it just steps over the wheel. As it cools down to surrounding temperature, it presses the semicircular parts together. If the coefficient of linear expansion of the metal is α , and its Youngs' modulus is Y, the force that one part of the wheel applies on the other part is-



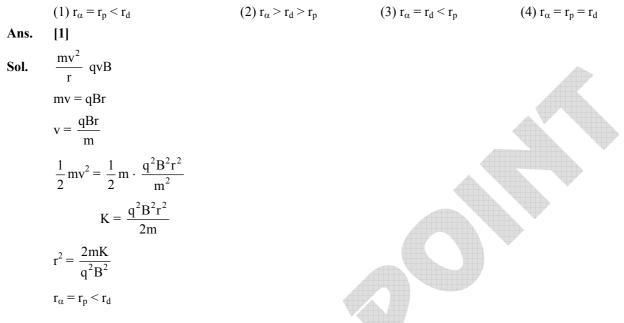
CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com


CAREER POINT

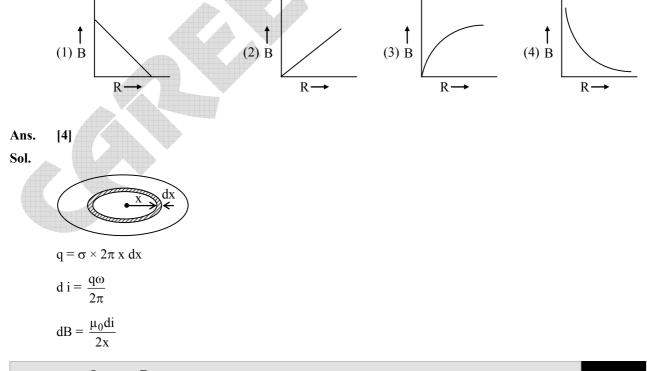
Ø

Q.25 Helium gas goes through a cycle ABCDA (consisting of two isochoric and two isobaric lines) as shown in figure. Efficiency of this cycle is nearly : (Assume the gas to close to ideal gas)

Q.26 Hydrogen atom is excited from ground state to another state with principal quantum number equal to 4. Then the number of spectral lines in the emission spectra will be-


CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

AIEEE 2012 EXAMINATION


CAREER POINT

P

Q.27 Proton, Deuteron and alpha particle of the same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively r_p , r_d and r_α . Which one of the following relations is correct ?

Q.28 A charge Q is uniformly distributed over the surface of non-conducting disc of radius R. The disc rotates about an axis perpendicular to its plane and passing through its centre with an angular velocity ω . As a result of this rotation a magnetic field of induction B is obtained at the centre of the disc. If we keep both the amount of charge placed on the disc and its angular velocity to be constant and vary the radius of the disc then the variation of the magnetic induction at the centre of the disc will be represented by the figure :

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

$$dB = \frac{\mu_0 \omega \sigma}{4\pi x} \times 2\pi x \, dx$$
$$B = \frac{\mu_0 \omega \sigma}{2} [R]$$
$$B = \frac{\mu_0 \omega}{2} \times \frac{Q}{\pi R^2} \times R$$
$$B = \frac{\mu_0 \omega \times Q}{2\pi R}$$
$$B \propto \frac{1}{R}$$

Q.29 An electromagnetic wave in vacuum has the electric and magnetic fields \vec{E} and \vec{B} , which are always perpendicular to each other. The direction of polarization is given by \vec{X} and that of wave propagation by \vec{k} . Then-

(1) $\vec{X} \ \vec{E}$ and $\vec{k} \ \vec{E} \times \vec{B}$	(2) $\vec{X} \ \vec{B}$ and $\vec{k} \ \vec{E} \times \vec{B}$
(3) $\vec{X} \parallel \vec{E}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$	(4) $\vec{X} \parallel \vec{B}$ and $\vec{k} \parallel \vec{B} \times \vec{E}$

Ans. [1]

- Sol. Direction of electromagnetic wave is along $\vec{E} \times \vec{B}$ and direction of polarization is along electric field.
- Q.30 A Carnot engine, whose efficiency is 40 %, takes in heat from a source maintained at a temperature of 500 K. It is desired to have an engine of efficiency 60 %. Then, the intake temperature for the same exhaust (sink) temperature must be-

(1) 1200 K

- (2) 750 K
- (3) 600 K
- (4) efficiency of Carnot engine cannot be made larger than 50 %

Ans. [2]

Sol.

Let $T_1 =$ Source temperature

 $T_2 = Sink's$ temperature

$$\frac{40}{100} = \frac{T_1 - T_2}{T_1} = \frac{500 - T_2}{500}$$

 $\Rightarrow 2000 = 5000 - 10T_2 \Rightarrow 10T_2 = 3000$

$$T_2 = 300$$

Now,
$$\frac{60}{100} = \frac{T_1 - 300}{T_1}$$

 $\Rightarrow 6T_1 = 10T_1 - 3000 \Rightarrow 4T_1 = 3000 \Rightarrow T_1 = 750 \text{ K}$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CAREER POINT

Þ

Ē

Part B - Chemistry

Q.31	2-Hexyne gives trans -2- Hexene on treatment with -		
	(1) Li/NH ₃	(2) Pd/BaSO ₄	
	(3) LiAlH ₄	(4) Pt/H ₂	
Ans.	[1]		
	CH ₃ –CH ₂ -	-CH ₂ H	
Sol.	$CH_3-CH_2-CH_2-C\equiv C-CH_3 \xrightarrow{Li/NH_3} \rightarrow$	C=C II H CH ₃	
	2-hexyne	Trans-2-hexene	
Q.32	Which of the following on thermal-decomposition	n yields a basic as well as an acidic oxide?	
	(1) KCIO ₃	(2) CaCO ₃	
	(3) NH ₄ NO ₃	(4) NaNO ₃	
Ans.	[2]		
Sol.	$CaCO_3 \xrightarrow{\Lambda} CaO + CO_2$		
	basic oxide acidic oxide		
Q.33	Which one of the following statements is correct	?	
	(1) All amino acids are optically active		
	(2) All amino acids except glycine are optically a	ctive	
	(3) All amino acids except glutamic acid are optic	cally active	
	(4) All amino acids except lysine are optically act	tive	
Ans.	[2]		
	Н		
Sol.	H ₂ N–C–COOH		
	H		
	Glycine (simplest amino acid)		
	(Due to absence of chiral carbon it is optically ina	active)	
Q.34	The density of a solution prepared by dissolving	120 g of urea (mol. mass = 60 u) in 1000g of water is 1.15	
	g/mL. The molarity of this solution is :		
	(1) 1.78 M	(2) 1.02 M	
	(3) 2.05 M	(4) 0.50 M	

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CODE-A	
--------	--

P

Ans. [3]

Sol.
$$M = \frac{120}{60} \times \frac{1000}{\frac{1120}{1.15}}$$
$$= 2 \times \frac{100}{112} \times 1.15$$

Q.35 The incorrect expression among the following is -

(1) In isothermal process, $w_{\text{reversible}} = -nRT \ln \frac{V_f}{V_i}$

(2)
$$\ln K = \frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}$$

(3) $K = e^{-\Delta G^{\circ}/RT}$
(4) $\frac{\Delta G_{system}}{\Delta S_{total}} = -T$

Ans. [2]

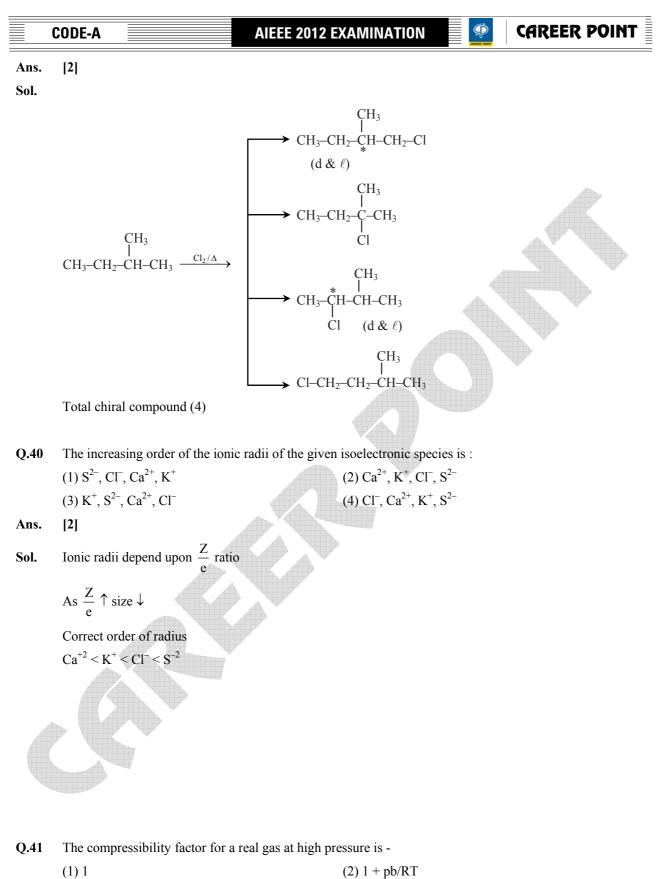
Sol. $\Delta G^{\circ} = - RT \ln K = \Delta H^{\circ} - T\Delta S^{\circ}$

 $\Delta G^{o} = - RT \ln K$

$$-\left(\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}\right) = \ln K$$

- **Q.36** Which branched chain isomer of the hydrocarbon with molecular mass 72u gives only one isomer of mono substituted alkyl halide ?
 - (1) Neopentane(2) Isohexane(3) Neohexane(4) Tertiary butyl chloride

Ans. [1]


Sol.
$$CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{X_2/hv} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3 \xrightarrow{CH_3} CH_3$$

Neo pentane

 $M.W. = 5 \times 12 + 12 \times 1 = 72$

(It contain only one type of 1°H)

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-A	AIEEE 2012 EXAMINATION
Q.37	According to Freundlich adsor	ption isotherm, which of the following is correct ?
	(1) $\frac{x}{m} \propto P^1$	(2) $\frac{x}{m} \propto P^{1/n}$
	(3) $\frac{x}{m} \propto P^0$	(4) All the above are correct for different ranges of pressure
Ans.	[4]	
Sol.	$\frac{x}{m} \propto P (At low P)$	
	$\frac{x}{m} \propto P^{1/n}$ (At medium P)	
	$\frac{x}{m} \propto P^{o}$ (At high P)	
	= All are correct.	
Q.38	In which of the following pair	s the two species are not isostructural ?
	(1) PCl_4^+ and $SiCl_4$	(2) PF_5 and BrF_5
	(3) AlF_6^{3-} and SF_6	(4) CO_3^{2-} and NO_3^{-}
Ans.	[2]	
Sol.	$F \xrightarrow{F} F \xrightarrow{F} F$ $F $	$F \xrightarrow{F} F$
Q.39		are possible on monochlorination of 2-methyl butane ?
	(1) 2	(2) 4
	(3) 6	(4) 8

(3) 1 - pb/RT (4) 1 + RT/pb

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-A	AIEEE 2012 EXAMINATION	CAREER POINT
Ans.	[2]		
Sol.	$\left(P + \frac{a}{V^2}\right)(V - b) = RT$ for 1 n	nole	
	At high pressure, $P >> -$	$\frac{a}{V^2}$	
	$P(V-b) = RT \implies PV = R$	T + Pb	
	$\frac{PV}{RT} = 1 + \frac{Pb}{RT} \implies Z = 1 + \frac{Pb}{RT}$	Pb RT	
Q.42	Which among the following will	be named as dibromidobis (ethylene diamine)	chromium (III) bromide ?
	(1) $[Cr(en)_2Br_2]$ Br	(2) $[Cr(en)_2Br_2]Br$	
	$(3) [Cr (en) Br_2]Br$	(4) [Cr (en) ₃]Br ₃	
Ans.	[2]		
Sol.	$[Cr(en)_2Br_2]Br$		
Q.43	In the given transformation, whi	ch of the following is the most appropriate reag	ent?
	CH=CHCOCH ₃		
		Reagent	
	HO' ~		
	CH=CHCH ₂ CH ₃		
	HO		
	(1) Zn – Hg/HCl	(2) Na, Liq. NH ₃	
	(3) NaBH ₄	(4) NH ₂ NH ₂ , OH	
Ans.	[4]		
	0		
	CH=CH-C-CH ₃	CH=CH-CH ₂ -C	'H ₃
Sol.		$\xrightarrow{\text{NH}_2-\text{NH}_2/\text{OH}^-} \qquad \qquad$	-
	НО	НО	
	In order to protect -OH group, r	eduction of $\sum_{C=O}$ group takes place in alkaling	e media.
		,	
Q.44	Lithium forms body centered cu	bic structure. The length of the side of its unit c	ell is 351 pm. Atomic radius
	of the lithium will be -	-	
	(1) 300 pm	(2) 240 pm	
<u> </u>	(3) 152 pm	(4) 75 pm	
Ans.	[3]		
Sol.	For B.C.C.		
	$\sqrt{3} a = 4r$		
	$r = \frac{\sqrt{3}}{4} \times 351 = 152 \text{ pm}$		

	CODE-A		AIEEE 2012 I	EXAMINATION	CAREER POINT
Q.45	K _f for water	is 1.86 K kg mol ⁻¹ .	If your automobil	e radiator holds 1.0 kg of wa	ter, how many grams of
	ethylene gly	$col (C_2H_6O_2) must$	you add to get the	freezing point of the solution	n lowered to -2.8° C?
	(1) 93 g			(2) 39 g	
	(3) 27 g			(4) 72 g	
Ans.	[1]				
Sol.	$\Delta T_{\rm f} = K_{\rm f} m$				
	2.8 = 1.86 ×	$\frac{W_{B}}{M_{B}} \times \frac{1000}{W_{A}}$			
	$= 1.86 \times \frac{W_{I}}{62}$	$\frac{B}{2} \times \frac{1000}{1000}$			
	= 93.3 g				
Q.46	The molecul	e having smallest b	ond angle is -		
	(1) $AsCl_3$			(2) $SbCl_3$	
	$(3) \operatorname{PCl}_3$			(4) NCl ₃	
Ans.	[2]				
Sol.	Order of bor	-			
	$NCl_3 > PCl_3$	> AsCl ₃ $>$ SbCl ₃			
Q.47	What is DD	T among the follow	ing -		
	(1) A fertiliz	zer		(2) Biodegradable pollutan	t
	(3) Non – bi	odegradable polluta	nt	(4) Greenhouse gas	
Ans.	[3]				
Sol.	Decompositi	ion of DDT is not p	ossible by micro o	rganisms.	
Q.48	The pH of a	0.1 molar solution	of the acid HQ is 3	3. The value of the ionization	constant, Ka of this acid is -
	(1) 1×10^{-3}			(2) 1×10^{-5}	
	(3) 1×10^{-7}			(4) 3×10^{-1}	
Ans.	[2]				
Sol.	$HQ \rightleftharpoons H^+$				
		$[H^+] = 3; [H^+] = 10^{-1}$,		
	$[\mathrm{H}^+] = \sqrt{\mathrm{K}_{\mathrm{a}}}$	×C			
	$10^{-3} = \sqrt{K_a}$	×0.1			
	$K_a = \frac{(10^{-3})^2}{0.1}$	2 = 1 × 10 ⁻⁵			

	CODE-A AIEEE 2012	EXAMINATION	
Q.49	Very pure hydrogen (99.9%) can be made by whi	ch of the following processes ?	
	(1) Mixing natural hydrocarbons of high molecular weight		
	(2) Electrolysis of water		
	(3) Reaction of salt like hydrides with water		
	(4) Reaction of methane with steam		
Ans.	[3]		
Sol.	$MH \xrightarrow{H_2O} MOH + H_2\uparrow$		
	(Metal hydride) (metal hydroxide)		
Q.50	Aspirin is known as -		
	(1) Phenyl salicylate	(2) Acetyl salicylate	
	(3) Methyl salicylic acid	(4) Acetyl salicylic acid	
Ans.	[4]		
	O-COCH ₃		
Sol.	Aspirin is COOH acetyl salicylic acid.		
	~		
Q.51	Which of the following compounds can be detected	ed by Molisch's test ?	
L.	(1) Sugars	(2) Amines	
	(3) Primary alcohols	(4) Nitro compounds	
Ans.	[1]		
Sol.	This is characteristic Test of carbohydrates (sugar	·s)	
Q.52		$^{2+}$ /Ni, and Fe ²⁺ /Fe are – 0.76, – 0.23 and – 0.44 V	
	respectively. The reaction $X + Y^{2+} \rightarrow X^{2+} + Y$ wi	ll be spontaneous when -	
	(1) $X = Ni$, $Y = Zn$	(2) $X = Fe$, $Y = Zn$	
	(3) X = Zn, Y = Ni	(4) X = Ni, Y = Fe	
Ans.	[3]		
Sol.	Order of elements in E.C.S is Zn, Fe, Ni		
	Zn can reduce Fe or Ni $= +2$ $+2$		
	$\therefore Zn(s) + Ni^{+2} \longrightarrow Zn^{+2} + Ni$		
A	$\therefore X = Zn, Y = Ni$		
Q.53	Ortho-Nitrophenol is less soluble in water than p-	and m-Nitrophenols because -	
	(1) o-Nitrophenol shows Intramolecular H-bondin	ng	
	(2) o-Nitrophenol shows Intermolecular H-bondin	ng	
	(3) Melting point of o-Nitrophenol is lower than t	hose of m- and p –isomers.	
	(4) o-Nitrophenol is more volatile in steam than the	hose of m- and p-isomers	
Ans.	[1]		
Sol.	o-Nitrophenol shows intramolecular H-bonding		

	CODE-A	AIEEE 2012 EXAMINATION	CAREER POINT	
Q.54	Iodoform can be prepared from	n all except -		
	(1) Isopropyl alcohol	(2) 3-Methyl-2-butanone		
	(3) Isobutyl alcohol	(4) Ethyl methyl ketone		
Ans.	[3]			
Sol.	CH_3 CH_3 CH_3 + ve t	est		
	OH			
	CH3			
		a tast		
	$CH_3-C-CH-CH_3 \longrightarrow + v$			
	0			
	CH ₃			
	CH ₃ CHCH ₂ OH	ve test		
	CH_3 -C- CH_2 - CH_3 +			
Q.55	The species which can best ser	ve as an initiator for the cationic polymerization i	s	
C ¹¹	(1) HNO ₃	(2) AlCl ₃		
	(3) BuLi	(4) LiAlH_4		
Ans.	[2]			
Sol.	In cationic polymerization lew	is acids like AlCl ₃ , BF ₃ etc. are act as good initiat	or.	
Q.56	The equilibrium constant (K _c)	The equilibrium constant (K _c) for the reaction $N_2(g) + O_2(g) \rightarrow 2NO(g)$ at temperature T is 4×10^{-4} . The		
	value of K _c for the reaction, No	$O(g) \rightarrow \frac{1}{2}N_2(g) + \frac{1}{2}O_2(g)$ at the same temperatu	re is -	
	(1) 2.5×10^2	(2) 4×10^{-4}		
	(3) 50.0	(4) 0.02		
Ans.	[3]			
Sol.	(2) = (1) reversed $\times \frac{1}{2}$			
501.	$(2) = (1)$ reversed $\times \frac{1}{2}$			
	$\therefore \text{ K'}_{\text{C}} = \frac{1}{\sqrt{K_{\text{C}}}} = \frac{1}{\sqrt{4 \times 10^{-4}}} = -$	$\frac{1}{-50}$		
	$\frac{1}{\sqrt{K_c}} - \frac{1}{\sqrt{4 \times 10^{-4}}} - \frac{1}{\sqrt{4 \times 10^{-4}}}$	$2 \times 10^{-2} = 50$		
Q.57	For a first order reaction, (A) –	\rightarrow products, the concentration of A changes from (0.1 M to 0.025 M in 40	
		when the concentration of A is 0.01 M, is :		
	(1) 3.47×10^{-4} M/min	(2) 3.47×10^{-5} M/min		
	(3) 1.73×10^{-4} M/min	(4) 1.73×10^{-5} M/min		
Ans.	[1]			
Sol.	$0.1 \xrightarrow{20} 0.05 \xrightarrow{20} 0.025$			
501	$t_{1/2} = 20 \text{ min}$			
	$K = \frac{0.693}{20}$			
	$r = K[A] = \frac{0.693}{20} \times 0.01$			
	20			
	$= 3.465 \times 10^{-4} \text{ M/min}$			

POINT

	CODE-A AIEEE 2012	EXAMINATION
Q.58	Which method of purification is represented by	the following equation :
	$Ti(s) + 2I_2(g) \xrightarrow{523 \text{ K}} Ti I_4(g) \xrightarrow{1700 \text{ K}} Ti(s)$	$) + 2I_2(g)$
	(1) Cupellation	(2) Poling
	(3) Van Arkel	(4) Zone refining
Ans.	[3]	
Sol. Q.59	Van-Arkel method Iron exhibits + 2 and + 3 oxidation states. Which (1) Ferrous compounds are relatively more ionic (2) Ferrous compounds are less volatile than the (3) Ferrous compounds are more easily hydrolys	corresponding ferric compounds
	(4) Ferrous oxide is more basic in nature than th	e ferric oxide
Ans. Sol.	[3] Fe ⁺³ compounds are more easily hydrolysed than	n the corresponding ferrous compounds.
Q.60	The electrons identified by quantum numbers n	and ℓ
	(a) $n = 4, \ell = 1$	(b) $n = 4, \ell = 0$
	(c) $n = 3, \ell = 2$	(d) $n = 3, \ell = 1$
	can be placed in order of increasing energy as -	
	(1) (d) < (b) < (c) < (a)	(2) (b) < (d) < (a) < (c)
Ans. Sol.	(3) (a) $<$ (c) $<$ (b) $<$ (d) [1] d $<$ b $<$ c $<$ a 3p 4s 3d 4p	(4) (c) < (d) < (b) < (a)
	CAREER POINT, CP Tower, Road No.1, IP Website : www.careerpointgroup.com, Em	

Part C - Mathematics

Q.61 Let $X = \{1, 2, 3, 4, 5\}$. The number of different ordered pairs (Y, Z) that can be formed such that $Y \subseteq X$, $Z \subseteq X$ and $Y \cap Z$ is empty, is: $(1) 3^5$ $(2) 2^5$ $(3) 5^3$ $(4) 5^2$ Ans. [1] For any element x_i present in X, 4 cases arises while making subsets Y and Z. Sol. **Case-1** : $x_i \in Y, x_i \in Z \Rightarrow Y \cap Z \neq \phi$ **Case-2** : $x_i \in Y, x_i \notin Z \Longrightarrow Y \cap Z = \phi$ **Case-3**: $x_i \notin Y, x_i \in Z \Rightarrow Y \cap Z = \phi$ **Case-4**: $x_i \notin Y, x_i \notin Z \Rightarrow Y \cap Z = \phi$ \therefore for every element, number of ways = 3 for which $Y \cap Z = \phi$ \Rightarrow Total ways = $3 \times 3 \times 3 \times 3 \times 3$ [:: no. of elements in set X = 5] $=(3)^{5}$ Q.62 The population p(t) at time t of a certain mouse species satisfies the differential equation $\frac{dp(t)}{dt} = 0.5 p(t) - 450$. If p(0) = 850, then the time at which the population becomes zero is : (2) $\frac{1}{2}$ ln 18 $(1) \ln 9$ (4) 2 ln 18 (3) ln 18 Ans. [4] $\frac{\mathrm{d}p}{\mathrm{d}t} + \left(-\frac{1}{2}\right)p = (-450)$ Sol. $I.F. = e^{-\frac{1}{2}t}$ $p e^{-\frac{1}{2}t}$ $=\int (-450) e^{-t/2} dt$ $=(-450) \frac{e^{-t/2}}{1} + \lambda$ $p = 900 + \lambda e^{t/2}$ $p(0) = 850 \Rightarrow \lambda = -50$ $900 = 50 e^{t/2}$ $18 = e^{t/2}$ $t = 2 \ln 18$

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

25 / 39

P

	CODE-A	AIEEE 2012	EXAMINATION	CAREER POINT
Q.63	If f: $R \rightarrow R$ is a function defined	d by $f(x) = [x] \cos \theta$	$\left(\frac{2x-1}{2}\right)\pi$, where [x] denotes	the greatest integer function,
	then f is :			
	(1) discontinuous only at $x = 0$		(2) discontinuous only at nor	n-zero integral values of x
	(3) continuous only at $x = 0$		(4) continuous for every real	Х
Ans.	[4]			
Sol.	$f(x) = g(x) \cdot h(x)$			
	g(x) = [x] discontinuous at integr	ger points where h	(x) is zero.	
	So $f(x)$ is continuous everywhen	e.		
Q.64	Let P and Q be 3×3 matrices w	with $P \neq Q$. If $P^3 =$	Q^3 and $P^2Q = Q^2P$, then determ	minant of $(P^2 + Q^2)$ is equal
	to:			
	(1) 1		(2) 0	
	(3) –1		(4) -2	*
Ans.	[2]			
Sol.	$P^3 = Q^3$	(i)		
	$P^2Q = Q^2P$	(ii)		
	(i) – (ii)			
	$P^3 - P^2 Q = Q^3 - Q^2 P$			
	$P^2 (P - Q) = Q^2 (Q - P)$			
	$(P - Q) (P^2 + Q^2) = 0$			
	But $P \neq Q$			
	$\therefore P^2 + Q^2 = 0$			
	$\Rightarrow (\mathbf{P}^2 + \mathbf{Q}^2) = 0$			
Q.65	If the integral $\int \frac{5\tan x}{\tan x - 2} dx = x$	$x + a \ln \sin x - 2 c$	$ \cos x + k$ then a is equal to :	
	(1) -2		(2) 1	
	(3) 2		(4) –1	
Ans.	[3]			
Sol.	RHS			
	$1 + \frac{a(\cos x + 2\sin x)}{\sin x - 2\cos x} = \frac{5\tan x}{\tan x - 2\cos x}$	_		
	$\sin x - 2\cos x$ $\tan x - 1$	2		
	$(2a + 1) \sin x + (a - 2) \cos x = 5$	i sin x		
	\Rightarrow a = 2			

Þ **CODE-A AIEEE 2012 EXAMINATION CAREER POINT** If $g(x) = \int_{0}^{x} \cos 4t \, dt$, then $g(x + \pi)$ equals: Q.66 (1) $g(x) + g(\pi)$ (2) $g(x) - g(\pi)$ (4) $\frac{g(x)}{g(\pi)}$ (3) $g(x) \cdot g(\pi)$ Ans. [1] $g(x+\pi) = \int_{0}^{x+\pi} \cos 4t \, dt$ Sol. $= \int_{0}^{x} \cos 4t \, dt + \int_{x}^{x+\pi} \cos 4t \, dt$ $= g(x) + g(\pi)$ An equation of a plane parallel to the plane x - 2y + 2z - 5 = 0 and at a unit distance from the origin is : Q.67 (2) x - 2y + 2z - 1 = 0(1) x - 2y + 2z + 1 = 0(4) x - 2y + 2z - 3 = 0(3) x - 2y + 2z + 5 = 0Ans. [4] x - 2y + 2z - 5 = 0Sol. ...(i) $x - 2y + 2z + \lambda = 0$... (ii) P(0, 0, 0)М /(ii) $\frac{0-0+0+\lambda}{3}$ PM ==1 $\lambda = \pm 3$ Put in (ii) $x - 2y + 2z \pm 3 = 0$

Q.68 A spherical balloon is filled with 4500 π cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of 72 π cubic meters per minute, then the rate (in meters per minute) at which the radius of the balloon decreases 49 minutes after the leakage began is :

(1) 7/9	(2) 2/9
(3) 9/2	(4) 9/7

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

...(i)

Þ

Ans. [2]

Sol. $V_0 = 4500 \pi$ cubic meters

So $r_0 = 15$ meters

Given $\frac{dV}{dt} = 72 \pi$ cubic meters/min.

We know

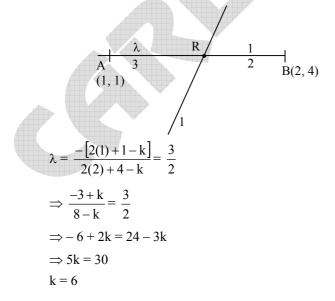
$$V = \frac{4}{3}\pi r^{3}$$
$$\frac{dV}{dt} = 4\pi r^{2} \left(\frac{dr}{dt}\right)$$

Also at time t = 49 min, let radius is 'r' then

$$\frac{4}{3}\pi [r_0^3 - r^3] = 72\pi \times 49$$

 \Rightarrow r = 9 meters

So from (i)


$$72\pi = 4\pi (9)^2 \cdot \left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)$$
$$\Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}} = \left(\frac{2}{9}\right)$$

Q.69 If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then k equals :

(2) 6

(4) 29/5

- (1) 5 (3) 11/5 [2]
- Ans.
- **Sol.** 2x + y = k

.....(i)

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

Let \hat{a} and \hat{b} be two unit vectors. If the vectors $\vec{c} = \hat{a} + 2\hat{b}$ and $\vec{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, Q.70 then the angle between \hat{a} and \hat{b} is :

(1)
$$\frac{\pi}{2}$$
 (2) $\frac{\pi}{3}$
(3) $\frac{\pi}{4}$ (4) $\frac{\pi}{6}$

[2] Ans.

$\vec{c} \perp \vec{d}$ Sol.

- $\Rightarrow \vec{c} \cdot \vec{d} = 0$ \Rightarrow ($\hat{a} + 2\hat{b}$). ($5\hat{a} - 4\hat{b}$) = 0 $\Rightarrow 5 + (-8) - 4(\hat{a} \cdot \hat{b}) + 10(\hat{b} \cdot \hat{a}) = 0$ $\Rightarrow -3 + 6 |\hat{a}| |\hat{b}| \cos \theta = 0$ $\Rightarrow \cos \theta = \frac{1}{2}$ $\theta = \frac{\pi}{3}$
- **Statement 1**: An equation of a common tangent to the parabola $y^2 = 16\sqrt{3} x$ and the ellipse $2x^2 + y^2 = 4$ is **Q.71** $y = 2x + 2\sqrt{3}$.

Statement 2: If the line $y = mx + \frac{4\sqrt{3}}{m}$, $(m \neq 0)$ is a common tangent to the parabola $y^2 = 16\sqrt{3} x$ and the ellipse $2x^2 + y^2 = 4$, then m satisfies $m^4 + 2m^2 = 24$.

(1) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.

- (2) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
- (3) Statement 1 is true, Statement 2 is false.
- (4) Statement 1 is false, Statement 2 is true.

Ans.

[1]

Sol.
$$\begin{cases} y^2 = 16\sqrt{3}x \dots(i) \\ y^2 = 4ax \\ 4a = 16\sqrt{3} \\ a = 4\sqrt{3} \end{cases} \& \begin{cases} \frac{x^2}{2} + \frac{y^2}{4} = 1 \dots(ii) \\ c^2 = a_1^2 m^2 + b_1^2 \\ = 2m^2 + 4 \end{cases}$$
$$y = mx + c \qquad (iii) \\ for (i) c = \frac{a}{m} = \frac{4\sqrt{3}}{m} \end{cases}$$

m = m

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

$$\Rightarrow c^{2} = \frac{16 \times 3}{m^{2}} = 2m^{2} + 4$$

$$\Rightarrow m^{2} = t \Rightarrow 2t^{2} + 4t - 48 = 0$$

$$\Rightarrow t^{2} + 2t - 24 = 0$$

$$\Rightarrow t^{2} + 6t - 4t - 24 = 0$$

$$(t + 6) (t - 4) = 0$$

$$t = -6, 4 = m^{2} \Rightarrow m = \pm 2$$

$$\Rightarrow c = \frac{4\sqrt{3}}{\pm 2} = \pm 2\sqrt{3}$$

$$y = mx + c$$

$$y = 2x + 2\sqrt{3}$$

$$y = -2x - 2\sqrt{3}$$

Q.72 Three numbers are chosen at random without replacement from {1, 2, 3,, 8}. The probability that their minimum is 3, given that their maximum is 6, is :

(1)
$$\frac{1}{5}$$
 (2) $\frac{1}{4}$
(3) $\frac{2}{5}$ (4) $\frac{3}{8}$
[1]
 $P\left[\frac{\min .3}{\max .6}\right] = \frac{P[\min 3 \cap \max 6]}{P(\max 6)}$

$$=\frac{{}^{2}C_{1}}{{}^{5}C_{2}}=\frac{2}{10}=1/5$$

Ans.

Sol.

Q.73 A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is :

(1)
$$-4$$
 (2) -2
(3) $-\frac{1}{2}$ (4) $-\frac{1}{4}$

CAREER POINT

P

y - 2 = m(x - 1)(1)
Q $(0,2-m)$ $A(1,2)$ $(m-2,)$
$(\frac{m-2}{m}, 0)$
$y = 0 \implies x = \frac{m-2}{m}$
$x = 0 \Longrightarrow y = 2 - m$
$\Delta_{\rm OPQ} = \left \frac{1}{2} \left(\frac{m-2}{m} \right) (2-m) \right $
$=\frac{(m-2)^2}{2m} = -\frac{(m^2+4-4m)}{2m} = -\frac{1}{2}\left[m+\frac{4}{m}-4\right]$
$\frac{\mathrm{d}\Delta}{\mathrm{d}m} = -\frac{1}{2} \left[1 - \frac{4}{\mathrm{m}^2} \right] = 0$
$m^2 = 4 \implies m = \pm 2$
$\frac{d^{2}\Delta}{dm^{2}} = \frac{d}{dm} \left\{ -\frac{1}{2} (1 - 4m^{-2}) \right\}$
$= 0 + 4(-2)m^{-3} = -\frac{8}{m^3}$
If $m = -2$
$\frac{d^2\Delta}{dm^2} > 0$

Q.74 Assuming the balls to be identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is :

(1) 629	(2) 630
(3) 879	(4) 880
[3]	

Ans.

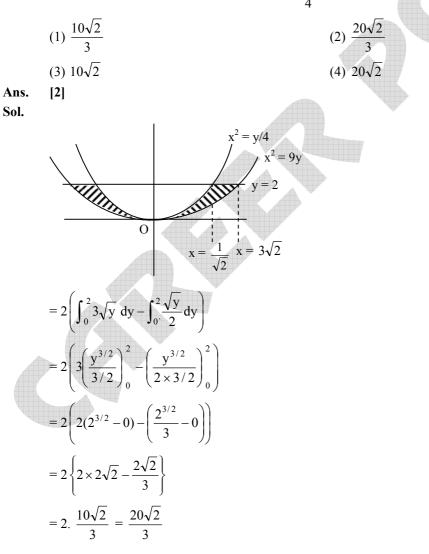
Sol. Number of ways of selection at least one ball = [(10 + 1)(9 + 1)(8 + 1)] - 1 = 880 - 1 = 879

Q.75 Statement 1: The sum of the series $1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + \dots + (361 + 380 + 400)$ is 8000.

Statement 2 : $\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$, for any natural number n.

- (1) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
- (2) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
- (3) Statement 1 is true, Statement 2 is false.
- (4) Statement 1 is false, Statement 2 is true.

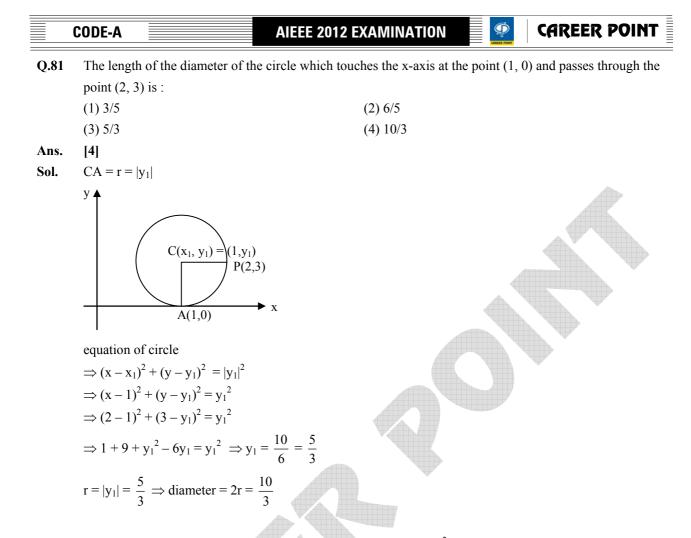
CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com


	CODE-A		AIEEE 2012 E		CAREER POINT
Ans.	[1]				
Sol.	Statement 2	$2:(1^3-0^3)+(2^3-1)$	$(3^3 - 2^3) + (3^3 - 2^3) + \dots$	$+ [n^{3} - (n-1)^{3}] = n^{3}$	
	∴ Stateme	ent 2 is correct.			
	Statement -	$-1: \sum_{k=1}^{20} [k^3 - (k-1)^2]$	$[] = 20^3$		
	$\Rightarrow \sum_{k=1}^{20} [k^2 - k^2]$	$(k-1)^2 + k(k-1)$	$=20^{3}$		
	$\Rightarrow [1 + 0 +$	0] + [4 + 1 + 2] + [9	+4+6]+[16+9	+ 12] + [400 + 361 + 3	380] = 8000
	∴ True				
	& correct e	explanation.			
Q.76	Let $\Lambda = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ If u and u	ara aalumn matri	1	nd Au ₂ = $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, then u ₁ + u ₂ is
Q.70	Let $A = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$	$\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. If u_1 and u_2		tes such that $Au_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ at	Id Au ₂ - $\begin{bmatrix} 1\\0 \end{bmatrix}$, then $u_1 + u_2$ is
	equal to :	,			
	-			(-1)	
	$(1)\begin{pmatrix} -1\\1\\-1 \end{pmatrix}$			$(2)\begin{pmatrix} -1\\ -1\\ 0 \end{pmatrix}$	
	(1)			(-1)	
	$(3)\begin{pmatrix}1\\-1\\-1\end{pmatrix}$			$(4) \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$	
				$\left(0 \right)$	
Ans.	[3]				
	Г.	1 11			
Sol.	Let $u_1 = \begin{vmatrix} a \\ b \\ c \end{vmatrix}$				
	$Au_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 2 & 1 \end{array} \times \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$			
	3	$2 1 \begin{bmatrix} c \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$			
	\Rightarrow a = 1, 2a	$a + b = 0 \implies b = -2$			
	3a	+2b+c=0			
		$c = 0 \Rightarrow c = 1$			
	[1	[]			
	\therefore $u_1 = \begin{bmatrix} 1 \\ - \\ 1 \end{bmatrix}$	2			
		·]			

CAREER POINT

Þ

$$Au_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
$$\Rightarrow p = 0, \ 2p + q = 1 \Rightarrow q = 1$$
$$3p + 2q + r = 0$$
$$r = -2$$
$$u_{2} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$
$$u_{1} + u_{2} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$


Q.77 The area bounded between the parabolas $x^2 = \frac{y}{4}$ and $x^2 = 9y$, and the straight line y = 2 is :

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-A	AIEEE 2012 EXAMINATION	Sector Career Point	
Q.78	2.78 Let $x_1, x_2,, x_n$ be n observations, and let \overline{x} be their arithmetic mean and σ^2 be their variance.			
	Statement 1 : Variance of $2x_1, 2x_2, \dots, 2x_n$ is $4 \sigma^2$.			
	Statement 2 : Arithmetic mean of $2x_1, 2x_2, \dots, 2x_n$ is $4\overline{x}$.			
	(1) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.			
	(2) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.			
	(3) Statement 1 is true, Statement 2 is false.			
	(4) Statement 1 is false, Statem	ent 2 is true.		
Ans.	[3]			
Sol.		then variance of $2x_1$, $2x_2$, $2x_3$ $2x_n$ is 4	$-\sigma^2$	
		en variance is λ^2 times the old variance]		
	mean of $2x_1$, $2x_2$, $2x_3$ $2x_n$ i			
	so statement 1 is true and state	ment 2 is not correct.		
			$\blacksquare \blacksquare \blacksquare$	
Q.79	If n is a positive integer, then ($\sqrt{3} + 1$ ²ⁿ - $(\sqrt{3} - 1)^{2n}$ is :		
	(1) an odd positive integer	(2) an even positive in	nteger	
	(3) a rational number other than	n positive integers (4) an irrational numb	ber	
Ans.	[4]			
Sol.	$\left(\sqrt{3}+1\right)^{2n} - \left(\sqrt{3}-1\right)^{2n}$			
	$= 2[T_2 + T_4 + T_6 + T_8 + \dots + T_8]$	2n]		
	$= 2[{}^{2n}C_1(\sqrt{3})^{2n-1} + {}^{2n}C_3(\sqrt{3})^{2n-1}]$	$2^{n-3} + \dots + 2^n C_{2n-1}(\sqrt{3})$		
	$= 2\sqrt{3} \left[{}^{2n}C_1 \left(\sqrt{3} \right)^{2n-2} + {}^{2n}C_3 \left(\sqrt{3} \right)^{2n-4} \dots + {}^{2n}C_{2n-1} \right]$			
	$= \sqrt{3} \ . \lambda \ [\lambda \in I]$			
	an ir-rational number.			
A 90	If 100 times the 100 th terms of a	AP with non zero common difference ed	much the 50 times its 50 th terms them	
Q.80	the 150 th term of this AP is :	n AP with non zero common difference ed	juais the 50 times its 50° term, then	
	(1) 150 times its 50^{th} term	(2) 150		
	(3) zero	(2) 100 (4) - 150		
Ans.	[3]			
Sol.	$100.T_{100} = 50.T_{50}$			
	$2T_{100} = T_{50}$			
	2a + 198 d = a + 49d			
	a + 149d = 0			
	$T_{150} = 0$			

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

Q.82 Let $a, b \in R$ be such that the function f given by $f(x) = \ln |x| + bx^2 + ax$, $x \neq 0$ has extreme values at x = -1and x = 2.

Statement 1 : f has local maximum at x = -1 and at x = 2.

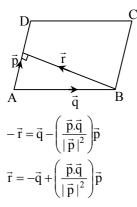
Statement 2 : $a = \frac{1}{2}$ and $b = \frac{-1}{4}$.

- (1) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 1.
- (2) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 1.
- (3) Statement 1 is true, Statement 2 is false.
- (4) Statement 1 is false, Statement 2 is true.

Sol.
$$f(x) = \frac{1}{x} + 2bx + a$$

At $x = -1, 2 \implies f(x) = 0$
 $-1 - 2b + a = 0 \qquad \dots(i)$
 $\frac{1}{2} + 4b + a = 0 \qquad \dots(ii)$
By solving $a = \frac{1}{2}, b = -\frac{1}{4}$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

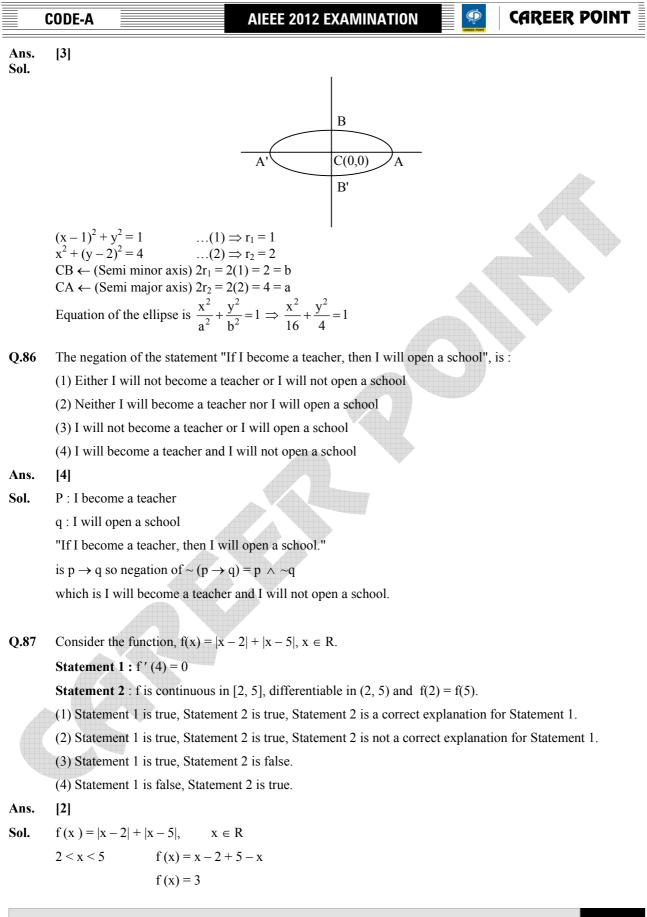

CAREER POINT

Þ

Q.83 Let ABCD be a parallelogram such that $\overrightarrow{AB} = \vec{q}$, $\overrightarrow{AD} = \vec{p}$ and $\angle BAD$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} is given by :

(1) $\vec{r} = -\vec{q} + \left(\frac{\vec{p}.\vec{q}}{\vec{p}.\vec{p}}\right)\vec{p}$	(2) $\vec{r} = \vec{q} - \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$
(3) $\vec{r} = -3\vec{q} + \frac{3(\vec{p}.\vec{q})}{(\vec{p}.\vec{p})}\vec{p}$	(4) $\vec{r} = 3\vec{q} - \frac{3(\vec{p}.\vec{q})}{(\vec{p}.\vec{p})}\vec{p}$

Ans. Sol. [1]



Q.84 If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k is equal to : (1) $\frac{2}{9}$ (2) $\frac{9}{2}$ (3) 0
(4) -1 Ans. [2] Sol. $\begin{vmatrix} 3-1 & k+1 & 0-1 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{vmatrix} = 0$ Solve the determinant, then $k = \frac{9}{2}$

Q.85 An ellipse is drawn by taking a diameter of the circle $(x - 1)^2 + y^2 = 1$ as its semi minor axis and a diameter of the circle $x^2 + (y - 2)^2 = 4$ as its semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :

(1) $x^2 + 4y^2 = 8$	(2) $4x^2 + y^2 = 8$
$(3) x^2 + 4y^2 = 16$	$(4) 4x^2 + y^2 = 4$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

Now statement-I : f'(x) = 0 at 2 < x < 5Statement 2 : f is continuous in [2, 5]

Differentiable in (2, 5) and f(2) = f(5) (Rolle's theorem)

Q.88 If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies :

- (1) on a circle with centre at the origin.
- (2) either on the real axis or on a circle not passing through the origin.
- (3) on the imaginary axis.
- (4) either on the real axis or on a circle passing through the origin.

Ans. [4]

Sol.
$$\frac{z^2}{z-1} = \frac{z^2(\overline{z}-1)}{|z-1|^2}$$
 is purely real
 $\Rightarrow z^2. \ \overline{z} - z^2$
 $= z. |z|^2 - z^2$
 $= (x^2 + y^2) (x + iy) - (x^2 - y^2 + 2ixy)$ is purely real
 $\Rightarrow y(x^2 + y^2) - 2xy = 0$
 $\Rightarrow y[x^2 + y^2 - 2x] = 0$
 $y = 0 \text{ or } x^2 + y^2 - 2x = 0$

Imaginary axis or circle passing through origin.

- **Q.89** The equation $e^{\sin x} e^{-\sin x} 4 = 0$ has :
 - (1) no real roots.
 - (3) exactly four real roots.

- (2) exactly one real root.
- (4) infinite number of real roots.

Ans.

Sol. $e^{\sin x} = t$ (let)

[1]

$$t - \frac{1}{t} = 4$$
$$t^2 - 4t - 1 = 0$$
$$t = \frac{4 \pm \sqrt{20}}{2} = 2 \pm \sqrt{5}$$

 $e^{\sin x} = 2 + \sqrt{5} > e$ (not possible)

 $e^{\sin x} = 2 - \sqrt{5} = -ve$ number (not possible)

No real root.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

	CODE-A	AIEEE 2012 EXAMINATION	CAREER POINT	
Q.90	In a $\triangle PQR$, if $3 \sin P + 4 \cos Q = 6$ and $4 \sin Q + 3 \cos P = 1$, then the angle R is equal to :			
	(1) $\frac{\pi}{6}$	(2) $\frac{\pi}{4}$		
	$(3) \frac{3\pi}{4}$	(4) $\frac{5\pi}{6}$		
Ang	·	6		
Ans. Sol.	$[1]$ $P + Q + R = \pi$		~	
501.	$9 \sin^2 P + 16 \cos^2 Q + 24 \sin P \cos^2 Q$	P = 36		
	$16\sin^2 Q + 9\cos^2 P + 24\sin Q$ c			
	$25 + 24 \sin(P + Q) =$			
	$\sin\left(\mathbf{P}+\mathbf{Q}\right) = -$	$\frac{12}{24} = \frac{1}{2}$		
	$P+Q=\frac{\pi}{6}, \ \frac{5\pi}{6}$			
	$P + Q = \frac{\pi}{6}$ does not sa	tisfy		
	$P + Q = \frac{5\pi}{6}$			
	$\therefore R = \frac{\pi}{6}$			

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.) Ph.: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com