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The examination tests the following requirements

1 Knowledge, Understanding and Skills

1.1 SI units
1.2 Mechanics

1.2.1 Vectors
1.2.2 Kinematics
1.2.3 Dynamics

1.3 Momentum and energy
1.3.1 Momentum concepts
1.3.2 Energy concepts
1.3.3 Molecular kinetic theory

1.4 Electricity
1.4.1 Current
1.4.2 Emf and potential difference
1.4.3 Resistance
1.4.4 DC circuits
1.4.5 Capacitance

1.5 Atomic and nuclear physics
1.5.1 Probing matter
1.5.2 Ionising radiation
1.5.3 Energy

1.6 Quantum physics
1.6.1 Photons
1.6.2 Mattes

1.7 Waves and oscillations
1.7.1 Waves
1.7.2 Oscillations

1.8 Fields
1.8.1 Force fields

1.9 Magnetic effects of currents
1.9.1 B-fields
1.9.2 Flux and electromagnetic induction

2 Experiment and Investigation

2.1 Analysing evidence and drawing conclusions
2.2 Evaluating evidence and procedures

3 Mathematical Requirements

3.1 Arithmetic and computation
3.2 Handling data
3.3 Algebra
3.4 Geometry and trigonometry
3.5 Graphs
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1 Question 1 : Total 25 marks

This question tests the following from AEA specification:

1 Knowledge, Understanding and Skills

1.1 SI units

1.2.2 Kinematics

1.3 Momentum and energy

1.3.2 Energy concepts
1.3.3 Molecular kinetic theory

3 Mathematical Requirements

3.3 Algebra

Relevant readings:

- Derivation of Van der Walls gas equation

- Equation of state

(a) 4 marks

(i) The volume of one mole of a given molecules.

(ii) Relating to physical observable measurable at large scale.

(iii) Supposed to fit the model description, may not be exactly real.

(iv) Collision in which no kinetic energy is lost (not converted to internal energy.)

(b) 3 marks

(i) The condition we normally live in. T 300K and p 1× 105Pa. 1

(ii) Same law applicable to many different gases can imply that the assumption made in the ideal
gas low is approximately true for most gases. Most importantly, “internal energy of an ideal gas
depends only on temperature” means that energy in ideal gas only exist in the form of kinetic
energy. For monatomic gas like argon, this is quite true while gases made of more complicated
molecule can deviate from this more.

(iii) High pressure and high temperature. Low pressure and low temperature generally make gases
more like ideal gas.

(c) 4 marks

1Pa = 1N/m2. eg. centre of earth: 4 × 1011Pa, over-pressure in automobile tire: 2 × 105Pa and lowest vacuum
achieved in lab: 10−12Pa.
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(i) Kinetic energy of gas molecules, i.e. the movement of molecules (translational energy).

(ii) Real gas molecules have more degree of freedom than just one stated above. They can have
Rotational motion or vibrational motion which contribute to the total energy of the gas. These
effects are visible at higher temperatures.

(d) 8 marks

(i) Both pVm and pb should have the same unit so the equation can hold. Hence b has has dimension
of volume.

(ii) The b term is a correction to the ideal gas equation which corrects for the fact that molecules are
not of infinitesimal size but they have a finite size. This term subtract the volume occupied by
molecules making (v−b) the effective volume available for molecules to move around. Considering
molecules to be spherical, the volume occupied by molecules is 4

3πr3, where r = 1
2d. So in terms

of diameter of molecules, b = 1
6πd3 as a possible estimate for b.

(iii) Under the assumption that molecules being spherical, the actual volume excluded by the exis-
tance of molecules is more than that of their volume. There’s dead space between molecules even
when they are packed as close as possible, which should be subtracted from the total volume.

(iv) The gas would become liquid under high pressure. When molecules are put together into close
distance, their attractive force become overwhelming compared to their kinetic energy and they
go through a transition of phase. 2

2this equation, p(Vm − b) = RT is a simplified version of what is known as Van der Waals gas equation. The full
equation is (p + a

V 2
m

)(Vm − b) = RT . The first correction accounts for the attractive force between molecules (Van der

Waals force) and the second accounts for the volume occupied by molecules
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2 Question 2 : Total 18 marks

This question tests the following:

Relevant readings:

-

(a) 3 marks

(b) 4 marks

(c) 3 marks

(d) 8 marks
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3 Question 3 : Total 11 marks

This question tests the following:

1 Knowledge, Understanding and Skills

1.3 Momentum and energy

1.3.1 Momentum concepts
1.3.2 Energy concepts

1.8 Fields

1.8.1 Force fields

3 Mathematical Requirements

3.3 Algebra

3.4 Geometry and trigonometry

Relevant readings:

-

(a) 7 marks

(i) The electric force between two charges of mass m, charge q, placed r away from each other,
Felec, is given by Felec = qE, where

E =
q

4πε0r2
.

Hence
Felec = 2.3× 10−28 × 1

r2
.

The gravitational force, on the other hand, is given by Fgrav = mg, where

g =
Gm

r2

where G is the gravitational constant. Hence

Fgrav = 5.5× 10−71 × 1
r2

.

So the ratio between the two is
Felec

Fgrav
= 4.18× 10−42.

(ii) The comparison made in (i) does suggest that gravitational force is much weaker than electric
force and in fact it’s quite true for most of such comparison made in microscopic physics. How-
ever, this is not the whole story. Gravitational force in the context of large distance, large mass
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scale physics tend to be much more dominant effect compared to electric force (eg. interstellar
force). 3

(iii) Electric force is only exerted on charged objects, while gravitational force is felt by any massive
objects.

(b) 4 marks
Assume that the satellite’s orbit is circular in the following. The period of the planetary motion is
related to the speed of its rotation by

v =
2πr

T
,

where v is the velocity of the satellite. The centripetal acceleration of the satellite is equal to the
hypothetical gravitational force, hence

msv
2

r
=

HmEms

r
,

where ms is the satellite’s mass and M is the Earth’s mass. From the two equations, one can derive

r−2T 2 =
4π2

HmE
.

(m and n can be other values as long as the right side has the same power. For eg, r−1T 1 =
√

4π2

HmE

is acceptable.) 4

3There is no direct reasons why electric force is weaker than gravitational field at this scale. Either type of forces do
not change their intrinsic strength but the reality is that it is very difficult to create an object that is hugely in excess
of one (+ or -) static charge. Molecules or atoms can be charged by ionization but once they are charged, like charges
repel each other and they tend not to form larger objects with larger charge. Hence, large objects like stars are usually
charge neutral and the electric field due to these objects is virtually zero. This should not be mistaken as there is no
electromagnetic activity in such large objects. Stars can be magnetically highly active and all the light coming from
stars are all due to internal electromagnetic activities.

4The period T derived from correct gravitational force is T 2 = 4π2

GmE
r3
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4 Question 4 : Total 12 marks

This question tests the following:

Relevant readings:

-

(a) 5 marks

(b) 6 marks

(c) 1 marks

8



5 Question 5 : Total 13 marks

This question tests the following:

1 Knowledge, Understanding and Skills

1.1 SI units
1.2 Mechanics

1.2.1 Vectors
1.2.2 Kinematics
1.2.3 Dynamics

1.3 Momentum and energy
1.3.1 Momentum concepts
1.3.2 Energy concepts

1.7 Waves and oscillations
1.7.2 Oscillations

3 Mathematical Requirements

3.3 Algebra
3.4 Geometry and trigonometry

Relevant readings:

-

(a) 2 marks

f =
1
2π

√
k

m

- f is the frequency in the unit of s−1.

- k is the spring constant in the unit of Nm−1 = kgs−2. (cf. F = −kx)

- m is the mass in kg.

together you have s−1 on both sides.

(b) 11 marks

(i) Consider the force on spring due to extension F = kx. The frequency of the spring can be
derived as follows:

F = kx

ma = kx

a =
k

m
x

a = ω2x
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where ω =
√

k
m is the angular frequency and hence f = 1

2π

√
k
m . In the case of two strings joined

together, when the mass is moved along the direction of the string, the force on the mass is
simply double that of single spring, ie. F = 2kx. Put this into the same procedure as above,
a = ω2x and this shows that the motion is simple harmonic motion, but this time ω =

√
2k
m and

f = 1
2π

√
2k
m . Therefore, the frequency increases by factor of

√
2 and this is equivalent to having

one spring whose spring constant is 2k.

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(i) Consider the force on spring due to extension F = kx. The frequency of the spring can be
derived as follows:

F = kx

ma = kx

a =
k

m
x

a = ω2x

where ω =
√

k
m is the angular frequency and hence f = 1

2π

√
k
m . In the case of two strings joined

together, when the mass is moved along the direction of the string, the force on the mass is
simply double that of single spring, ie. F = 2kx. Put this into the same procedure as above,
a = ω2x and this shows that the motion is simple harmonic motion, but this time ω =

√
2k
m and

f = 1
2π

√
2k
m . Therefore, the frequency increases by factor of

√
2 and this is equivalent to having

one spring whose spring constant is 2k.

(ii) 1. Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ θ tan θ θ θ.

Since tan θ = x
L , sin θ θ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ � kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 � L = L(1 +
x2

L2
)

1
2 � L � L(1 +

1
2

x2

L2
) � L =

1
2

x2

L
.

Hence,

F⊥1 � k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ � (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ θ tan θ θ θ.

Since tan θ = x
L , sin θ θ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ � kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 � L = L(1 +
x2

L2
)

1
2 � L � L(1 +

1
2

x2

L2
) � L =

1
2

x2

L
.

Hence,

F⊥1 � k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ � (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(i) Consider the force on spring due to extension F = kx. The frequency of the spring can be
derived as follows:

F = kx

ma = kx

a =
k

m
x

a = ω2x

where ω =
√

k
m is the angular frequency and hence f = 1

2π

√
k
m . In the case of two strings joined

together, when the mass is moved along the direction of the string, the force on the mass is
simply double that of single spring, ie. F = 2kx. Put this into the same procedure as above,
a = ω2x and this shows that the motion is simple harmonic motion, but this time ω =

√
2k
m and

f = 1
2π

√
2k
m . Therefore, the frequency increases by factor of

√
2 and this is equivalent to having

one spring whose spring constant is 2k.

(ii) 1. Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

√

L2 + x2

− L = − L =

t x is
e follosin θ

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ # kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L # L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 # k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ # (

x

L
)2kx

2. The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ # kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L # L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 # k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ # (

x

L
)2kx

2. The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(i) Consider the force on spring due to extension F = kx. The frequency of the spring can be
derived as follows:

F = kx

ma = kx

a =
k

m
x

a = ω2x

where ω =
√

k
m is the angular frequency and hence f = 1

2π

√
k
m . In the case of two strings joined

together, when the mass is moved along the direction of the string, the force on the mass is
simply double that of single spring, ie. F = 2kx. Put this into the same procedure as above,
a = ω2x and this shows that the motion is simple harmonic motion, but this time ω =

√
2k
m and

f = 1
2π

√
2k
m . Therefore, the frequency increases by factor of

√
2 and this is equivalent to having

one spring whose spring constant is 2k.

(ii) 1. Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ θ tan θ θ θ.

Since tan θ = x
L , sin θ θ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ � kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 � L = L(1 +
x2

L2
)

1
2 � L � L(1 +

1
2

x2

L2
) � L =

1
2

x2

L
.

Hence,

F⊥1 � k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ � (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ θ tan θ θ θ.

Since tan θ = x
L , sin θ θ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ � kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 � L = L(1 +
x2

L2
)

1
2 � L � L(1 +

1
2

x2

L2
) � L =

1
2

x2

L
.

Hence,

F⊥1 � k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ � (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(i) Consider the force on spring due to extension F = kx. The frequency of the spring can be
derived as follows:

F = kx

ma = kx

a =
k

m
x

a = ω2x

where ω =
√

k
m is the angular frequency and hence f = 1

2π

√
k
m . In the case of two strings joined

together, when the mass is moved along the direction of the string, the force on the mass is
simply double that of single spring, ie. F = 2kx. Put this into the same procedure as above,
a = ω2x and this shows that the motion is simple harmonic motion, but this time ω =

√
2k
m and

f = 1
2π

√
2k
m . Therefore, the frequency increases by factor of

√
2 and this is equivalent to having

one spring whose spring constant is 2k.

(ii) 1. Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

√

L2 + x2

− L = − L =

t x is
e follosin θ

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ # kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L # L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 # k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ # (

x

L
)2kx

2. The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ # kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L # L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 # k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ # (

x

L
)2kx

2. The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1. Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ θ tan θ θ θ.

Since tan θ = x
L , sin θ θ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ � kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 � L = L(1 +
x2

L2
)

1
2 � L � L(1 +

1
2

x2

L2
) � L =

1
2

x2

L
.

Hence,

F⊥1 � k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ � (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ θ tan θ θ θ.

Since tan θ = x
L , sin θ θ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ � kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 � L = L(1 +
x2

L2
)

1
2 � L � L(1 +

1
2

x2

L2
) � L =

1
2

x2

L
.

Hence,

F⊥1 � k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ � (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(ii) 1 Assume that the displacement x is small compared to L. Then the displacement angle θ
would also be small where the following approximation holds:

sin θ ≈ tan θ ≈ θ.

Since tan θ = x
L , sin θ ≈ x

L . The force in x direction due to one spring,

F⊥1 = F sin θ " kd
x

L
,

where F is the force on the spring into the direction of the spring and d, is the extension
of the string. The extension of the string is

d =
√

L2 + x2 − L = L(1 +
x2

L2
)

1
2 − L " L(1 +

1
2

x2

L2
)− L =

1
2

x2

L
.

Hence,

F⊥1 " k
1
2

x3

L2
=

1
2
(
x

L
)2kx.

So for two springs,
F⊥ " (

x

L
)2kx

2 The mass would move in a simple harmonic motion like in (i) but the frequency is much
lower in (ii) for the same x since the factor x

L is very small.

10

(i) Consider the force on spring due to extension F = kx. The frequency of the spring can be
derived as follows:

F = kx

ma = kx

a =
k

m
x

a = ω2x

where ω =
√

k
m is the angular frequency and hence f = 1

2π

√
k
m . In the case of two strings joined

together, when the mass is moved along the direction of the string, the force on the mass is
simply double that of single spring, ie. F = 2kx. Put this into the same procedure as above,
a = ω2x and this shows that the motion is simple harmonic motion, but this time ω =

√
2k
m and

f = 1
2π

√
2k
m . Therefore, the frequency increases by factor of

√
2 and this is equivalent to having

one spring whose spring constant is 2k.
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√

L2 + x2

− L = − L =

t x is
e follosin θ
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6 Question 6 : Total 10 marks

This question tests the following:

Relevant readings:

-

(a) 4 marks

(b) 6 marks

11



7 Question 7 : Total 15 marks

This question tests the following:

Relevant readings:

- none suggested

The answer to this question can vary largely. The following is one possible suggestion which includes
many useful points to be included in your solution
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