AEA 2001 Specimen

1. Find

$$
\begin{equation*}
\int x^{2}(\ln x)^{2} d x \tag{6}
\end{equation*}
$$

Hints Short answer Full working
2. Given that $a>-3$, find the value of a such that

$$
\begin{equation*}
\int_{-3}^{a} \frac{x}{\sqrt{4+x}} d x=\frac{22}{3} \tag{6}
\end{equation*}
$$

Hints Short answer Full working
3. Solve for values of x, in degrees, in the range $0 \leq x \leq 360$,

$$
\begin{equation*}
5 \sin 2 x+2 \cos x(2+\cos 2 x)=0 \tag{12}
\end{equation*}
$$

Hints Short answer Full working
4. \quad The following argument claims to show that $1=9$.

$$
\begin{aligned}
\cos ^{2} x & =1-\sin ^{2} x \\
1+\cos x & =1+\sqrt{1-\sin ^{2} x}
\end{aligned}
$$

then
squaring

$$
[1+\cos x]^{2}=\left[1+\sqrt{1-\sin ^{2} x}\right]^{2}
$$

when $x=2 \pi / 3$

$$
\begin{aligned}
{[1-1 / 2]^{2} } & =[1+\sqrt{1-3 / 4}]^{2} \\
1 / 4 & =[1+\sqrt{1 / 4}]^{2} \\
1 & =9
\end{aligned}
$$

(a) Explain carefully what is wrong with this argument.
(b) Rewrite the argument to show clearly how $(1+\cos x)^{2}$ can be written in terms of $\sin x$ for values of x in the range $0 \leq x \leq 2 \pi$.

Hints Short answer Full working
5. (a) Simplify
(i) $\sin 7 x \cos x+\sin x \cos 7 x$,
(ii) $\sin 7 x \cos x-\sin x \cos 7 x$.
(b) Find expressions, in terms of r, for P and Q so that

$$
2 \sin x \cos (2 r-1) x=\sin P x-\sin Q x .
$$

(c) Prove that for positive integers n,

$$
\sin 2 n x=2 \sin x \sum_{r=1}^{n} \cos [(2 r-1) x]
$$

(5)
(d) Solve, for $0<x<\pi$, the equation

$$
\begin{equation*}
\cos x(\cos x+\cos 3 x+\cos 5 x+\cos 7 x)=\frac{1}{2} \cot x \tag{6}
\end{equation*}
$$

(e) Find the exact value of

$$
\begin{equation*}
\int_{\pi / 6}^{\pi / 3} \frac{\sin 6 x}{\sin x} d x \tag{5}
\end{equation*}
$$

(f) State, giving a reason, what value $\frac{\sin 2 n x}{\sin x}$ takes as $x \rightarrow 0$.

Hints Short answer Full working
6.

Figure 1 shows a sketch of the graph f, where

$$
f(x)=\frac{x}{(x+1)(x+2)}, \quad x \in \mathbb{R}, \quad x \neq-1, x \neq-2 .
$$

(a) Find the exact values of the coordinates of the stationary points of f. Your answers should be in the form $p+q \sqrt{r}$ where p, q, and r are integers.
(b) Find the range of values of k for which $f(x)=k$ has no real roots.
(c) Find the value of a such that

$$
\begin{equation*}
\int_{a}^{2 a} f(x) d x=\ln 2 \tag{5}
\end{equation*}
$$

