AEA questions 2002 Page 1 of 4 Downloaded from http://www.thepaperbank.co.uk

AEA summer exam 2002

1. Solve the following equation, for $0 \le x \le \pi$, giving your answers in terms of π .

$$\sin 5x - \cos 5x = \cos x - \sin x. \tag{8}$$

Hints Short answer Full working

2. In the binomial expansion of

$$(1-4x)^p$$
, $|x| < \frac{1}{4}$,

The coefficient of x^2 is equal to the coefficient of x^4 and the	
coefficient of x^3 is positive. Find the value of <i>p</i> .	(9)

Hints Short answer Full working

3. The curve *C* has parametric equations

$$x = 15t - t^3$$
, $y = 3 - 2t^2$.

Find the values of t at the points where the normal to C at (14, 1) cuts C again. (11)

Hints Short answer Full working

4. Find the coordinates of the stationary points of the curve with equation

$$x^3 + y^3 - 3xy = 48$$

and determine their nature.

Hints Short answer Full working

5.

Figure 1

(11)

Downloaded from http://www.thepaperbank.co.uk

Figure 1 shows a sketch of part of the curve with equation

 $y = \sin(\cos x)$.

The curve cuts the *x*-axis at the points *A* and *C* and the *y*-axis at the point *B*.

(a) Find the coordinates of the points A, B and C.
(b) Prove that B is a stationary point.
(4)

(c) Given that the region *OCB* is convex, show that, for $0 \le x \le \frac{\pi}{2}$,

$$\sin(\cos x) \le \cos x$$

and

$$(1-\frac{2\pi}{x})\sin 1 \le \sin(\cos x)$$

and state in each case the value or values of x for which equality is achieved. (6)

(*d*) Hence show that

$$\frac{\pi}{4}\sin 1 \le \int_0^{\frac{\pi}{2}} \sin(\cos x) \, dx < 1.$$
(4)

http://www.warwick.ac.uk/AEAhelp/papers/realAea/questionParser.php

AEA questions 2002 Page 3 of 4 Downloaded from http://www.thepaperbank.co.uk

Hints Short answer Full working

Figure 2 shows a sketch of part of two curves C_1 and C_2 for $y \ge 0$.

The equation of C_1 is $y = m_1 - x^{n_1}$ and the equation of C_2 is $y = m_2 - x^{n_2}$, where m_1, m_2, n_1 and n_2 are positive integers with $m_2 > m_1$.

Both C_1 and C_2 are symmetric about the line x = 0 and they both pass through the points (3, 0) and (-3, 0).

Given that $n_1 + n_2 = 12$, find

- (a) the possible values of n_1 and n_2 , (4)
- (b) the exact value of the smallest possible area between C_1 and C_2 (8), simplifying your answer,
- (c) the largest value of x for which the gradients of the two curves can be the same. Leave your answer in surd form. (5)

Hints Short answer Full working

7. A student was attempting to prove that $x = \frac{1}{2}$ is the only real root of

http://www.warwick.ac.uk/AEAhelp/papers/realAea/questionParser.php

AEA questions 2002

Page 4 of 4

Downloaded from http://www.thepaperbank.co.uk

$$x^3 + \frac{3}{4}x - \frac{1}{2} = 0.$$

The attempted solution was as follows.

- $x^{3} + \frac{3}{4}x = \frac{1}{2}$ $\therefore \quad x(x^{2} + \frac{3}{4}) = \frac{1}{2}$ $\therefore \quad x = \frac{1}{2}$ or $x^{2} + \frac{3}{4} = \frac{1}{2}$ i.e. $x^{2} = -\frac{1}{4} \text{ no solution}$ $\therefore \quad x = \frac{1}{2} \text{ is only real root.}$ (a) Explain clearly the error in the above attempt.
- (a) Explain clearly the error in the above attempt. (1)
- (b) Give a correct version of the proof. (5)

The equation

$$x^3 + \beta x - \alpha = 0 \qquad (I).$$

where α , β are real, $\alpha \neq 0$, has a real root at $x = \alpha$

(c) Find and simplify an expression for β in terms of α and prove (6) that α is the only real root provided | α | < 2.

An examiner chooses a positive number α so that α is the only real root of the equation (I) but the incorrect method used by the student produces 3 distinct real 'roots'.

(d) Find the range of possible values for α . (7)

Hints Short answer Full working