AEA summer exam 2002

1. Solve the following equation, for $0 \leq x \leq \pi$, giving your answers in terms of π.

$$
\begin{equation*}
\sin 5 x-\cos 5 x=\cos x-\sin x . \tag{8}
\end{equation*}
$$

Hints Short answer Full working
2. In the binomial expansion of

$$
(1-4 x)^{p},|x|<\frac{1}{4},
$$

The coefficient of x^{2} is equal to the coefficient of x^{4} and the coefficient of x^{3} is positive. Find the value of p.

Hints Short answer Full working
3. The curve C has parametric equations

$$
x=15 t-t^{3}, y=3-2 t^{2} .
$$

Find the values of t at the points where the normal to C at $(14,1)$ cuts C again.

Hints Short answer Full working
4. Find the coordinates of the stationary points of the curve with equation

$$
x^{3}+y^{3}-3 x y=48
$$

and determine their nature.

Hints Short answer Full working
5.

Figure 1

Figure 1 shows a sketch of part of the curve with equation

$$
y=\sin (\cos x)
$$

The curve cuts the x-axis at the points A and C and the y-axis at the point B.
(a) Find the coordinates of the points A, B and C.
(b) Prove that B is a stationary point.
(c) Given that the region $O C B$ is convex, show that, for $0 \leq x \leq \frac{\pi}{2}$,

$$
\sin (\cos x) \leq \cos x
$$

and

$$
\left(1-\frac{2 \pi}{x}\right) \sin 1 \leq \sin (\cos x)
$$

and state in each case the value or values of x for which equality is achieved.
(d) Hence show that

$$
\frac{\pi}{4} \sin 1 \leq \int_{0}^{\frac{\pi}{2}} \sin (\cos x) d x<1
$$

6.

Figure 2

Figure 2 shows a sketch of part of two curves C_{1} and C_{2} for $y \geq 0$.

The equation of C_{1} is $y=m_{1}-x^{n_{1}}$ and the equation of C_{2} is $y=m_{2}-x^{n_{2}}$, where m_{1}, m_{2}, n_{1} and n_{2} are positive integers with $m_{2}>m_{1}$.

Both C_{1} and C_{2} are symmetric about the line $x=0$ and they both pass through the points $(3,0)$ and $(-3,0)$.

Given that $n_{1}+n_{2}=12$, find
(a) the possible values of n_{1} and n_{2},
(b) the exact value of the smallest possible area between C_{1} and C_{2}
, simplifying your answer,
(c) the largest value of x for which the gradients of the two curves can be the same. Leave your answer in surd form.

Hints Short answer Full working
7. A student was attempting to prove that $x=\frac{1}{2}$ is the only real root of

$$
x^{3}+\frac{3}{4} x-\frac{1}{2}=0
$$

The attempted solution was as follows.

$$
\left.\begin{array}{rlrl}
& & x^{3}+\frac{3}{4} x & =\frac{1}{2} \\
& \therefore & x\left(x^{2}+\frac{3}{4}\right) & =\frac{1}{2} \\
& \therefore & x & =\frac{1}{2} \\
& \text { or } & x^{2}+\frac{3}{4} & =\frac{1}{2} \\
& & & \\
& & x^{2} & =-\frac{1}{4} \text { no solution } \\
& & & x
\end{array}\right)=\frac{1}{2} \text { is only real root. }
$$

(a) Explain clearly the error in the above attempt.
(b) Give a correct version of the proof.

The equation

$$
\begin{equation*}
x^{3}+\beta x-\alpha=0 \tag{I}
\end{equation*}
$$

where α, β are real, $\alpha \neq 0$, has a real root at $x=\alpha$
(c) Find and simplify an expression for β in terms of α and prove
that α is the only real root provided $|\alpha|<2$.
An examiner chooses a positive number α so that α is the only real root of the equation (I) but the incorrect method used by the student produces 3 distinct real 'roots'.
(d) Find the range of possible values for α.

Hints Short answer Full working

