Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 there may be more space than you need.
- Calculators may not be used.
- You must show all your working.
- Answers should be given in as simple a form as possible, e.g. $\frac{2\pi}{3}$, $\sqrt{2}$, $3\sqrt{2}$.

Information

- The total mark for this paper is 100 of which 7 marks are for style and clarity of presentation.
- The style and clarity of presentation marks will be indicated as (+S1) or (+S2).
- There are 7 questions in this question paper.
- The marks for each question are shown in brackets.
- The total mark for each question is shown at the end of the question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

1.	$f(x) = x^{(x^2)} \qquad x > 0$	
	Use logarithms to find the x coordinate of the stationary point of the curve with equation $y = f(x)$.	
		(5)

Question 1 continued
(Total for Question 1 is 5 marks)

Figure 1

Figure 1 shows a regular hexagon OPQRST.

The vectors **p** and **q** are defined by $\mathbf{p} = \overrightarrow{OP}$ and $\mathbf{q} = \overrightarrow{OQ}$

Forces, in Newtons, $\mathbf{F}_{P} = (\overrightarrow{OP})$, $\mathbf{F}_{Q} = 2 \times (\overrightarrow{OQ})$, $\mathbf{F}_{R} = 3 \times (\overrightarrow{OR})$, $\mathbf{F}_{S} = 4 \times (\overrightarrow{OS})$ and $\mathbf{F}_{T} = 5 \times (\overrightarrow{OT})$ are applied to a particle.

(a) Find, in terms of p and q, the resultant force on the particle.

(5)

The magnitude of the acceleration of the particle due to these forces is $13\,\mathrm{m\,s^{-2}}$

Given that the mass of the particle is 3 kg,

(b) find $|\mathbf{p}|$

(5)

Question 2 continued

Question 2 continued	
	_

Question 2 continued
(Total for Question 2 is 10 marks)

3.	(a) Use the formulae for $\sin(A \pm B)$ and $\cos(A \pm B)$ to prove that $\tan(90^{\circ} - \theta) \equiv \cot\theta$	(3)
	(b) Solve for $0 < \theta < 360^{\circ}$	
	$2 - \sec^2(\theta + 11^\circ) = 2\tan(\theta + 11^\circ)\tan(\theta - 34^\circ)$	
	Give each answer as an integer in degrees.	(0)
		(8)
		(+S1)

Question 3 continued

Question 3 continued		

Question 3 continued	
	Total for Question 3 is 12 marks)

- **4.** Given that $f(x) = e^{x^3 2x}$
 - (a) find f'(x)

(2)

The curves C_1 and C_2 are defined by the functions g and h respectively, where

$$g(x) = 8x^3 e^{x^3 - 2x} \qquad x \in \mathbb{R}, x > 0$$

$$x \in \mathbb{R}, x > 0$$

$$h(x) = (3x^5 + 4x)e^{x^3 - 2x}$$
 $x \in \mathbb{R}, x > 0$

(b) Find the x coordinates of the points of intersection of $C_{\scriptscriptstyle 1}$ and $C_{\scriptscriptstyle 2}$

(4)

Given that C_1 lies above C_2 between these points of intersection,

(c) find the area of the region bounded by the curves between these two points. Give your answer in the form $A + Be^{C}$ where A, B, and C are exact real numbers to be found.

(7)

(+S1)

Question 4 continued	

Question 4 continued		

Question 4 continued	
	(Total for Question 4 is 14 marks)

5. An aeroplane leaves a runway and moves with a constant speed of V km/h due north along a straight path inclined at an angle $\arctan\left(\frac{3}{4}\right)$ to the horizontal.

A light aircraft is moving due north in a straight horizontal line in the same vertical plane as the aeroplane, at a height of 3 km above the runway.

The light aircraft is travelling with a constant speed of 2V km/h.

At the moment the aeroplane leaves the runway, the light aircraft is at a horizontal distance d km behind the aeroplane.

Both aircraft continue to move with the same trajectories due north.

(a) Show that the distance, D km, between the two aircraft t hours after the aeroplane leaves the runway satisfies

$$D^{2} = \left(\frac{6}{5}Vt - d\right)^{2} + \left(\frac{3}{5}Vt - 3\right)^{2}$$
(3)

Given that the distance between the two aircraft is never less than 2km,

(b) find the range of possible values for d.

(7)

(+S1)

Question 5 continued

Question 5 continued

Question 5 continued

Question 5 continued

Question 5 continued	
	(Total for Question 5 is 11 marks)

6.

Figure 2

Figure 2 shows the first few iterations in the construction of a curve, L.

Starting with a straight line L_0 of length 4, the middle half of this line is replaced by three sides of a trapezium above L_0 as shown, such that the length of each of these sides is $\frac{1}{4}$ of the length of L_0

After the first iteration each line segment has length one.

In subsequent iterations, each line segment parallel to L_0 similarly has its middle half replaced by three sides of a trapezium above that line segment, with each side $\frac{1}{4}$ the length of that line segment.

Line segments in L_n are either parallel to L_0 or are sloped.

- (a) Show that the length of L_2 is $\frac{23}{4}$
- (b) Write down the number of
 - (i) line segments in L_n that are parallel to L_0
 - (ii) sloped line segments in L_2 that are not in L_1
 - (iii) **new** sloped line segments that are created by the (n + 1)th iteration.

(3)

(c) Hence find the length of L_n as $n \to \infty$

(6)

(2)

The area enclosed between L_0 and L_n is A_n

(d) Find the value of A_1

(2)

(e) Find, in terms of n, an expression for $A_{n+1} - A_n$

(3)

(f) Hence find the value of A_n as $n \to \infty$

(3)

en that the limit of the area of the resulting shape is $26\sqrt{3}$ find the value of a .	
find the value of a.	
	(3)
	(+S2)

Question 6 continued

Question 6 continued

Question 6 continued

Question 6 continued

Question 6 continued

Question 6 continued	
	(Total for Question 6 is 24 marks)

7. A circle C has centre X(a, b) and radius r.

A line *l* has equation y = mx + c

(a) Show that the x coordinates of the points where C and l intersect satisfy

$$(m^2+1)x^2-2(a-m(c-b))x+a^2+(c-b)^2-r^2=0$$
(2)

Given that l is a tangent to C,

(b) show that

$$c = b - ma \pm r\sqrt{m^2 + 1} \tag{6}$$

The circle C_1 has equation

$$x^2 + v^2 - 16 = 0$$

and the circle C_2 has equation

$$x^2 + y^2 - 20x - 10y + 89 = 0$$

(c) Find the equations of any lines that are normal to both C_1 and C_2 , justifying your answer.

(3)

(d) Find the equations of all lines that are a tangent to both ${\cal C}_{\scriptscriptstyle 1}$ and ${\cal C}_{\scriptscriptstyle 2}$

[You may find the following Pythagorean triple helpful in this part:
$$7^2 + 24^2 = 25^2$$
]
(11)

(+S2)

Question 7 continued	

Question 7 continued	

Question 7 continued

Question 7 continued	

Question 7 continued
(Total for Question 7 is 24 marks)
FOR STYLE AND CLARITY OF PRESENTATION: 7 MARKS

FOR STYLE AND CLARITY OF PRESENTATION: 7 MARKS
TOTAL FOR PAPER IS 100 MARKS

Pearson Edexcel Award

Time 3 hours

Paper reference

9811/01

Advanced Extension Award Mathematics

Insert for questions 5, 6 and 7

Do not write on this insert

Turn over ▶

5. An aeroplane leaves a runway and moves with a constant speed of V km/h due north along a straight path inclined at an angle $\arctan\left(\frac{3}{4}\right)$ to the horizontal.

A light aircraft is moving due north in a straight horizontal line in the same vertical plane as the aeroplane, at a height of 3 km above the runway.

The light aircraft is travelling with a constant speed of 2V km/h.

At the moment the aeroplane leaves the runway, the light aircraft is at a horizontal distance d km behind the aeroplane.

Both aircraft continue to move with the same trajectories due north.

(a) Show that the distance, D km, between the two aircraft t hours after the aeroplane leaves the runway satisfies

$$D^{2} = \left(\frac{6}{5}Vt - d\right)^{2} + \left(\frac{3}{5}Vt - 3\right)^{2}$$
(3)

Given that the distance between the two aircraft is never less than 2km,

(b) find the range of possible values for d.

(7)

(+S1)

(Total for Question 5 is 11 marks)

Figure 2

Figure 2 shows the first few iterations in the construction of a curve, L.

Starting with a straight line L_0 of length 4, the middle half of this line is replaced by three sides of a trapezium above L_0 as shown, such that the length of each of these sides is $\frac{1}{4}$ of the length of L_0

After the first iteration each line segment has length one.

In subsequent iterations, each line segment parallel to L_0 similarly has its middle half replaced by three sides of a trapezium above that line segment, with each side $\frac{1}{4}$ the length of that line segment.

Line segments in L_n are either parallel to L_0 or are sloped.

(a) Show that the length of L_2 is $\frac{23}{4}$

(b) Write down the number of

- (i) line segments in L_n that are parallel to L_0
- (ii) sloped line segments in L_2 that are not in L_1
- (iii) **new** sloped line segments that are created by the (n + 1)th iteration. (3)

(c) Hence find the length of L_n as $n \to \infty$ (6)

The area enclosed between L_0 and L_n is A_n

(d) Find the value of A_1 (2)

(e) Find, in terms of n, an expression for $A_{n+1} - A_n$ (3)

(f) Hence find the value of A_n as $n \to \infty$ (3)

he same construction as described above is applied externally to the three sides of an quilateral triangle of side length a . iven that the limit of the area of the resulting shape is $26\sqrt{3}$		
quilateral triangle of side length a . iven that the limit of the area of the resulting shape is $26\sqrt{3}$.) find the value of a . (3) (+S2)	stion 6 continued	
) find the value of a . (3) (+S2)	The same construction as described above is a quilateral triangle of side length <i>a</i> .	pplied externally to the three sides of an
(3) (+S2)	Given that the limit of the area of the resulting	g shape is $26\sqrt{3}$
(+S2)	(g) find the value of a.	
(Total for Question 6 is 24 marks)		(+S2)
		(Total for Question 6 is 24 marks)

7. A circle C has centre X(a, b) and radius r.

A line *l* has equation y = mx + c

(a) Show that the x coordinates of the points where C and l intersect satisfy

$$(m^2+1)x^2-2(a-m(c-b))x+a^2+(c-b)^2-r^2=0$$
(2)

Given that l is a tangent to C,

(b) show that

$$c = b - ma \pm r\sqrt{m^2 + 1} \tag{6}$$

The circle C_1 has equation

$$x^2 + v^2 - 16 = 0$$

and the circle C_2 has equation

$$x^2 + y^2 - 20x - 10y + 89 = 0$$

(c) Find the equations of any lines that are normal to both C_1 and C_2 , justifying your answer.

(3)

(d) Find the equations of all lines that are a tangent to both C_1 and C_2

[You may find the following Pythagorean triple helpful in this part:
$$7^2 + 24^2 = 25^2$$
] (11)

(+S2)

(Total for Question 7 is 24 marks)

