

Mark Scheme (Results)

October 2020

Pearson Edexcel Advanced Extension Award In Mathematics (9811/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020 Publications Code 9811_01_2010_MS All the material in this publication is copyright © Pearson Education Ltd 2020

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

AEA 2006 paper final

Mark scheme

Question	Scheme		Marks	AOs
1(a)	<i>a</i> = 3		B1	1
			(1)	
(b)	$\frac{dy}{dx} = \frac{-4(2x-3)}{(x^2-3x)^2} \text{ or } \frac{dy}{dx} = \frac{4}{3x^2} - \frac{4}{3(x-3)^2} \text{ oe}$		B1	1
	$\frac{dy}{dx} = 0 \Rightarrow x = \frac{3}{2}$ Attempts <i>x</i> Correct <i>x</i>		M1	1
	$\frac{dx}{dx} = 0 \implies x = \frac{1}{2}$ Correct der	coordinate from a rivative.	A1	1
	$y = 1 - \frac{1}{3(3-2)} = -\frac{1}{9}$ so P is $\left \frac{3}{2}, -\frac{1}{9} \right $ from	rect y coordinate n a correct vative.	A1	1
			(4)	
(c)	Allow marks from a correct <i>P</i> even if from an incorrect derivative.	Evidence of translation left/ TP Minimum on y-axis	M1	3
		Correct $x = \pm \frac{3}{2}$ asymptotes	A1	3
		Evidence of $ f() $, e.g central \cup shape	M 1	2
	$y = 0$ $x = -\frac{3}{2}$ $x = -\frac{3}{2}$ $x = \frac{1}{2}$ $x = \frac{1}{2}$ $x = \frac{3}{2}$	Translation down by 1 unit – the y = 0 asymptote may be implied (but must be correct if shown).	B1	3
	y intercept is $\left(0, -\frac{2}{9}\right)$ follow through their y coordinate of P			3
	Attempts $f(x) = -1$ then subtracts $\frac{3}{2}$ or equivalent work to			2
	find the x intercepts are $\pm \frac{1}{2}$		A1	2 3
			(7)	1
			(12 m	narks

(b) Candidates may use symmetry but the method must be justified e.g. by stating the line of symmetry.

Question	Sch	eme			Marks	AOs
2(a)	As the ranges of f and g are $0 \leq f($	(x) < 2 and	d (-	$\infty < g(x) \leq \ln 4$		
	A function fg cannot be formed as the range of g does not lie in the domain of f. A function fg cannot be formed as the range of g does not lie in the domain of f. A function fg cannot be formed as the range of g does not lie in the domain of f. A feason of example is acceptable (range for g not needed but if no example is given the range must be given and correct) e.g g $\left(\frac{7}{4}\right) = \ln\left(\frac{15}{16}\right) < 0$ so range of g is not in domain of f.		where the range must correct) $n\left(\frac{15}{16}\right) < 0$ so range	B1	2	
	A function gf can be formed as the range of f lies in the domain of g. Correct range for f must have been found and reason given.			B1	2	
					(2)	
(b)	$g(f(x)) = \ln\left(4 - \left(2\sqrt{1 - e^{-x}}\right)^2\right)$			Attempts the composite.	M1	1
	$= \ln\left(4 - \left(2\sqrt{1 - e^{-x}}\right)^{2}\right) = \ln\left(4 - 4\left(1 - e^{-x}\right)\right)$ $= \ln\left(4e^{-x}\right) = \ln 4 + \ln\left(e^{-x}\right)$		Correct composite with square evaluated, but need not be simplified.	A1	1	
	$gf(x) = \ln 4 - x \text{ or } 2\ln 2 - x$			Correct form.	A1	1
	Domain is $x \in \mathbb{R}, x \ge 0$			Correct domain	B 1	2
	Range is $(-\infty <)$ gf $(x) \le \ln 4$			Correct range	B 1	2
					(5)	
(c)	$(0,\ln 4)$ $(\ln 4,0)$		thei	ine consistent with ir gradient and ercept from (b).	M 1	1
			and	e starting at $(0, \ln 4)$ l passing through (4, 0)	A1	1
					(2)	
(d)	where circle touches line then triangle XPQ is isosceles right angled, so) $2x^2 = (\ln 4 - (-\ln 0))^2 \Rightarrow x^2 = 1$		fin the	complete method to d r or r^2 where r is e radius – longer ethods are possible re.	M1 (S+)	3
	$r^{2} = \frac{1}{2} (\ln 36)^{2} = 2 (\ln 6)^{2}$ oe or $r =$ etc	$r = \sqrt{2} \ln 6$ Correct <i>r</i> or r^2 award when first seen, need not be simplified.		nen first seen, need	A1	3
	So equation of C is $x^{2} + (y + \ln 9)^{2} = 2(\ln 6)^{2}$ oe		no	prrect equation, need t be simplified but not isw if eg.	A1	3

(d) S+: For succinct solution		
Notes:		
	(12+1	marks)
S1 mark: Award S1 for a clear and concise solution that scores 10+ marks and includes the S+ point – ie must be a well explained solution with all terminology and notation correct (though there may be variations on the notation used).		2
	(3)	
simplified to ln 30	-	
$(\ln 6)^2$ is incorrec	ctly	

Question	Scheme	Mark s	AOs
3(a)(i)	$\left(1+\frac{2}{n}\right)^n = 1+n\left(\frac{2}{n}\right) + \frac{n(n-1)}{2}\left(\frac{2}{n}\right)^2 + \frac{n(n-1)(n-2)}{6}\left(\frac{2}{n}\right)^3 + \dots$ No need to simplify but allow if simplified forms are given instead.	B1	1
(ii)	$\left(1+\frac{2}{n}\right)^n = 1+2+\frac{2(n-1)}{n} + \frac{4(n^2-3n+2)}{3n^2} + \dots \text{(non-negative terms)}$ $= 1+2+2-\frac{2}{n} + \frac{4}{3} - \frac{4}{n} + \left(\frac{8}{3n^2} + \right)\dots \text{(non-negative terms)}$ Simplifies terms and cancels common factors (+ may be missing).	M1	2
	$\therefore \left(1 + \frac{2}{n}\right)^n \ge \frac{19}{3} - \frac{6}{n}$ (as all other terms are non-negative.) * (Accept all other terms are positive, but S- if no reason is given.)	A1* (S-)	2
		(3)	
(b)	Expands to e.g. $\left(1-\frac{x}{4}\right)^{\frac{1}{2}} = 1 + \frac{1}{2}\left(-\frac{x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)^2}{2} + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{x}{4}\right)^3}{6} + \dots$ Enough terms to deduce pattern of signs should be given.	M1 (S+)	1
	$\left(1-\frac{x}{4}\right)^{\frac{1}{2}} < 1-\frac{x}{8}$ since we can see all remaining terms are negative. Deduces inequality noting all remaining terms are negative. (Allow if \leq used as equality can be rejected as $\sqrt{3}$ is not rational.)	B1	3
	(Series converges for $ x < 4$ so) substituting $x = 1$ into the equation gives $\left(\frac{3}{4}\right)^{\frac{1}{2}} < 1 - \frac{1}{8} = \frac{7}{8}$ (M0 if attempt with an x with $ x > 4$)	(S+) M1	2
	Hence $\frac{\sqrt{3}}{2} < \frac{7}{8} \Rightarrow \sqrt{3} < \frac{7}{4}$ * Simplifies and rearranges, no incorrect working seen. Reason for inequality must have been given.	A1*	2
		(4)	
(c)	$f(9) = \left(1 + \frac{2}{9}\right)^9 - 3^{9/6} \ge \frac{19}{3} - \frac{6}{9} - 3\sqrt{3} \text{ using the result of (a)(ii)}$	M1	3
	$\geqslant \frac{17}{3} - 3 \times \frac{7}{4} = 5\frac{2}{3} - 5\frac{1}{4} = \frac{2}{3} - \frac{1}{4} > 0$ using the result of (b)	A1	3
	$f(10) = \left(1 + \frac{2}{10}\right)^{10} - 3^{\frac{10}{6}} = \left(\frac{6}{5}\right)^{10} - \left(\sqrt[6]{3}\right)^{10}$	M1	1

	(12 +1 marks)	
	(1)	
S1 mark: Award S1 for a clear and concise solution that scores 10+ marks without the S- or scores 9+ and includes an S+ point but no S	S1	2
	(5)	
So $f(x)$ changes sign on [9,10], and as it is a continuous function, thus there is a root in the interval [9,10] Must have scored both M's.	A1 (S-)	2
But $\left(\sqrt[6]{3}\right)^{10} > \left(\frac{6}{5}\right)^{10}$ (as $g(x) = x^{10}$ is an increasing function), so $f(10) < 0$ follows. (Correct reason must be given.)	A1 (S+)	3

Notes:

(a) S+ for noting other terms are non-negative rather than positive, or considers cases $n \ge 3$ and n = 1, 2 separately.

(b) S+ for reasoning for why terms after the second are all negative.

S+ for considering the domain of convergence to give valid expression.

(c) S+ for mentioning increasing function.

S- if continuity not mentioned.

Ques tion	Scheme		Mar ks	AOs
4(a)	The rectangle must lie under the parabola, so maximum w when the top right vertex also lies on the parabola, ie reco symmetry and forms an equation. Allow a suitable sketch	gnises the	M1	1
	By symmetry about the line $x = 5$, this occurs at $(10 - a, \frac{1}{2})$ width satisfies $w \le 10 - a - a = 10 - 2a^*$ Must be convin	·	A1*	2
			(2)	
(b)	Maximum area must occur for a full width rectangle, ie w	hen $w = 10 - 2a$	B1	2
	Thus max area occurs for $A = \frac{1}{2}a(10-a) \times (10-2a)$		M1	3
	Attempts $\frac{dA}{da} = \frac{1}{2}(10-2a) \times (10-2a) + \frac{1}{2}(10a-a^2) \times -2(=$ and sets $\frac{dA}{da} = 0$ and attempts to find a	M1	3	
	$\Rightarrow 3(a-5)^2 - 3 \times 25 + 50 = 0 \Rightarrow a = 5 \pm \sqrt{\frac{25}{2}} = 5 \pm \frac{5}{\sqrt{2}}$	Any correct method to solve the quadratic.	M1	3
	(But need $0 < a < 5$ to give a valid rectangle and as area is of this interval so)	s zero at either end	(S+)	
	max area occurs when $a = 5 - \frac{5\sqrt{3}}{3}$ (oe simplified)		A1	2
			(5)	
(c)	Max square area needs $10 - 2a = \frac{1}{2}a(10 - a) \Rightarrow a = \dots$	Sets up correct equation.	M1	3
	$20 - 4a = 10a - a^{2} \implies a^{2} - 14a + 20 = (a - 7)^{2} - 49 + 20 = 0$ $\implies a = 7 \pm \sqrt{29}$	Solves the quadratic, any valid means.	dM1	3
	But need $0 < a < 5$ (and $\sqrt{29} < 7$) so $a = 7 - \sqrt{29}$ Sel	ects correct root.	(S+) A1*	3
			(3)	
(d)	If area is 36, then width is given by $w = \frac{36}{\frac{1}{2}a(10-a)} = \frac{7}{10a}$ Therefore need solutions to $\frac{72}{10a-a^2} \le 10-2a$ OR need solutions to $\frac{1}{2}\left(a + \frac{72}{10a-a^2}\right)\left(10 - \left(a + \frac{72}{10a-a^2}\right)\right) \le \frac{1}{2}a(10-a)$ or othin <i>a</i> set up e.g. $10a - a^2 \ge 10b - b^2 \Longrightarrow (b-a)(b+a) + 10(a-b) \ge 0 \Longrightarrow 10^{-2}$ $a \ne b$ followed by substitution of $b = a + \frac{72}{10a-a^2}$ This mark is for a correct reasoning of the required <i>inequal</i>	B1	1	

 fully correct with no S- point or that scores 13+ and includes an S 	S+ point and no S		(1) 16 + 1 m	2
S1 mark: Award S1 for a clear and conc	sise solution that is			
			(6)	
(positive cubic with roots $1 < 7 - \sqrt{13} (< 5) < 7 + \sqrt{13}$ (as $3 < \sqrt{13} < 4$)) So possible values of <i>a</i> are $1 \le a \le 7 - \sqrt{13}$				2
$a^{2} - 14a + 36 = (a - 7)^{2} - 49 + 36 \Rightarrow CVs \text{ are } a = 1, 7 \pm \sqrt{13}$ Finds CVs				
Identifies $(a-1)$ as factor (factor theore $\Rightarrow (a-1)(a^2-14a+36) \ge 0$	em) and attempts to fa	ectorise	M1	3
$\Rightarrow a - 13a + 30a - 30 \neq 0$ or inequation.				
equation or inequation).			M1	3
	equation or inequation). $\Rightarrow a^{3} - 15a^{2} + 50a - 36 \ge 0$ Identifies $(a - 1)$ as factor (factor theorem) $\Rightarrow (a - 1)(a^{2} - 14a + 36) \ge 0$ $a^{2} - 14a + 36 = (a - 7)^{2} - 49 + 36 \Rightarrow CV2$ (positive cubic with roots $1 < 7 - \sqrt{13}$ (<	equation or inequation). $\Rightarrow a^{3} - 15a^{2} + 50a - 36 \ge 0$ Correct cubic achieve or inequation. Identifies $(a - 1)$ as factor (factor theorem) and attempts to factor $\Rightarrow (a - 1)(a^{2} - 14a + 36) \ge 0$ $a^{2} - 14a + 36 = (a - 7)^{2} - 49 + 36 \Rightarrow \text{CVs are } a = 1, 7 \pm \sqrt{13}$ (positive cubic with roots $1 < 7 - \sqrt{13} (< 5) < 7 + \sqrt{13}$ (as $3 < 4$)	$\Rightarrow a^{3} - 15a^{2} + 50a - 36 \ge 0$ Correct cubic achieved as equation or inequation. Identifies $(a - 1)$ as factor (factor theorem) and attempts to factorise $\Rightarrow (a - 1)(a^{2} - 14a + 36) \ge 0$ $a^{2} - 14a + 36 = (a - 7)^{2} - 49 + 36 \Rightarrow CVs \text{ are } a = 1, 7 \pm \sqrt{13}$ Finds CVs (positive cubic with roots $1 < 7 - \sqrt{13} (<5) < 7 + \sqrt{13}$ (as $3 < \sqrt{13} < 4$))	equation or inequation).Correct cubic achieved as equation or inequation.A1 $\Rightarrow a^3 - 15a^2 + 50a - 36 \ge 0$ Correct cubic achieved as equation or inequation.A1Identifies $(a-1)$ as factor (factor theorem) and attempts to factorise $\Rightarrow (a-1)(a^2 - 14a + 36) \ge 0$ M1 $a^2 - 14a + 36 = (a-7)^2 - 49 + 36 \Rightarrow CVs$ are $a = 1, 7 \pm \sqrt{13}$ Finds CVs(positive cubic with roots $1 < 7 - \sqrt{13} (< 5) < 7 + \sqrt{13}$ (as $3 < \sqrt{13} < 4$))(S+) A1So possible values of a are $1 \le a \le 7 - \sqrt{13}$ A1

Question	Scheme			Mark s	AOs
5(a)(i)	The expansion of $tan(x-y)$ is incorrect betweed denominator should be $1 + tan x tan y$	veen line	es 2 and 3, the	B1	2
	Between lines 3 and 4 when replacing tangen the student has incorrectly assumed $(\tan xy)^2$			B 1	2
	The factorisation between lines 5 and 6 is inc a-ab = a(1-b) not $a(1-ab)$	orrect, e	g	B1	2
				(3)	
(a)(ii)	Let $x = \arctan a$ and $y = \arctan b$. We have $\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} = \frac{a-b}{1+ab}$			M1	1
	Hence taking arctan of both sides gives $x - y = \arctan a - \arctan b = \arctan \left(\frac{a - b}{1 + ab}\right)$ as required.				2
				(2)	
(b)(i)	Horizontal motion is given by $s_x = 28 \cos \theta \times t$ $t = \frac{10\sqrt{2}}{28 \cos \theta}$ seconds to reach wall (oe equation		is in motion for	B1	1
	Vertical motion relative to <i>A</i> is given by $s_y =$ vertical motion relative to ground given by s_y (Any correct set up for vertical motion accept	, = 28 sin	2	B1 (S+)	3
	Ball clears wall if $s_y > 5$ (for motion relative relative to ground. Must be consistent with th motion.	to A) O	•	M1	3
	$\Rightarrow 28\sin\theta \times \frac{10\sqrt{2}}{28\cos\theta} - \frac{1}{2}g\left(\frac{10\sqrt{2}}{28\cos\theta}\right)^2 > 5 \text{ of}$	2	Substitutes for <i>t</i>	M1	3
	$\Rightarrow \tan\theta \times 10\sqrt{2} - \frac{98}{10} \frac{100}{28 \times 28} \sec^2\theta > 5$ $\Rightarrow 2\sqrt{2}\tan\theta - \frac{49}{14 \times 14} (1 + \tan^2\theta) > 1$	Attempts simplification and applies $\frac{\sin \alpha}{\cos \alpha} = \tan \theta$ and $\sec^2 \alpha = 1 + \tan^2 \theta$		M1	3
	$\Rightarrow \tan^2 \theta - 8\sqrt{2} \tan \theta + 5 > 0$ Correct quadratic in $\tan \theta$			A1	3
	$\Rightarrow \tan \theta = \frac{8\sqrt{2} \pm \sqrt{\left(8\sqrt{2}\right)^2 - 4 \times 1 \times 5}}{2 \times 1}$	quadrat	ts to solve ic – any ble method.	M1	3
	$\tan\theta = 4\sqrt{2} \pm \sqrt{27} = 4\sqrt{2} \pm 3\sqrt{3} \text{ oe}$	Co	orrect roots	A1	3

	$\beta - \alpha = \arctan\left(\frac{(4\sqrt{2} + 3\sqrt{3}) - (4\sqrt{2} - 3\sqrt{3})}{1 + (4\sqrt{2} + 3\sqrt{3})(4\sqrt{2} - 3\sqrt{3})}\right)$	$-\arctan\left(6\sqrt{3}\right)$	M1	
	$= \arctan\left(1 + \left(4\sqrt{2} + 3\sqrt{3}\right)\left(4\sqrt{2} - 3\sqrt{3}\right)\right)$ $= \arctan\left(\sqrt{3}\right) = 60^{\circ}$	$- 41 \operatorname{ctar}(1 + (32 - 27))$	A1 (S+)	3 3
			(10)	
(ii)	Probability that any given ball successfully clears the wall is given by $p = \frac{60^{\circ}}{90^{\circ}} = \frac{2}{3} *$			2
			(1)	
(iii)	(iii) If X is the random variable "number of balls passing over wall out of 10 attempts" then $X \sim B\left(10, \frac{2}{3}\right)$ (Realises binomial distribution needed)			3
	$P(X=2) = {}^{10}C_2 \left(\frac{2}{3}\right)^2 \left(\frac{1}{3}\right)^8$	Applies binomial formula	M1	3
	$\left(=\frac{10\times9}{2}\times\frac{2^2}{3^{10}}=5\times\frac{4}{3^8}\right)=\frac{20}{3^8}$	Correct answer.	A1	3
			(3)	
(b)(iv)	Taking air resistance into account would decre probability of success would be reduced and he 2 successes would increase .		B1	3
			(1)	
S2	 Award S2 for a fully correct solution that is such S+ points (see notes below). Award S1 for: a fully correct solution that is succinct any S+ points a fully correct solution that is slightly I S+ point A succinct solution that scores 17 or mone S+ point. 	but does not mention aboured but includes an	(2)	2 2
			(20 + 2 n)	narks
Notes:				
S+ for	early set out proof, with all notation etc correct. indicating $a > b > 0$ implies $90^\circ > \arctan a - \arctan a$ $\tan (\arctan a - \arctan b)$	n $b > 0$ so will give princi	ple value	for
S+ for clea	clear set out of the vertical motion equation and c r, concise solution r definition of random variable.	ondition needed.		
	st four marks in (b), if trajectory formula is used	award as follows:		

B1: Correct trajectory formula $y = x \tan \theta - \frac{gx^2}{2v_0^2 \cos^2 \theta}$ used (quoted and used or implied).

B1: Correct inequality formed.

M1: Attempt to use the trajectory formula – allow one slip if not quoted (but if quoted must be correct)

M1: Attempts to set up the inequality with correct height used.

Question	Schen	ne		Marks	AOs	
6(a)(i)	$u = a - x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -1 \Rightarrow \int_{0}^{a} f(x) \mathrm{d}x = \int_{a}^{0} f(x) \mathrm{d}x$	M1	1			
	$= \int_{0}^{a} f(a-u) du = \int_{0}^{a} f(a-x) dx *$	Correct work, treated correc given result.	, with limits tly, to achieve	A1*	2	
		(2)				
(a)(ii)	$\int_{0}^{\pi} x f\left(\sin x\right) dx = \int_{0}^{\pi} (\pi - x) f\left(\sin\left(\pi - x\right)\right) dx$	x))dx		M1	1	
	$=\int_{0}^{\pi}\pi f(\sin x)dx - \int_{0}^{\pi}xf(\sin x)dx (\sin x)dx$	nce $\sin(\pi - x)$	$=\sin x$ for all x)	A1 (S+)	3	
	Hence $2\int_{0}^{\pi} xf(\sin x) dx = \pi \int_{0}^{\pi} f(\sin x) dx = 2\pi \int_{0}^{\frac{\pi}{2}} f(\sin x) dx$ as $f(\sin x)$ is symmetric about the line with equation $x = \frac{\pi}{2}$					
	so $\int_{0}^{\pi} xf(\sin x) dx = \pi \int_{0}^{\frac{\pi}{2}} f(\sin x) dx *$					
				(4)		
(b)	(b) $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x}{\sin^{n} x + \cos^{n} x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} \left(\frac{\pi}{2} - x\right)}{\sin^{n} \left(\frac{\pi}{2} - x\right) + \cos^{n} \left(\frac{\pi}{2} - x\right)} dx$ $= \int_{0}^{\frac{\pi}{2}} \frac{\cos^{n} x}{\cos^{n} x + \sin^{n} x} dx \left(= \int_{0}^{\frac{\pi}{2}} \frac{\cos^{n} x}{\sin^{n} x + \cos^{n} x} dx \right)$				3	
	Applies result from (a)(i) and uses sy	mmetry of cos	and sin.			
	So $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x}{\sin^{n} x + \cos^{n} x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\cos^{n} x}{\sin^{n} x + \cos^{n} x} dx = \int_{0}^{\frac{\pi}{2}} 1 dx$ Realises the need to add the two integrals.			M1	2	
	Thus	1	lity of integrals pression in just	M1	3	

	$2\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x}{\sin^{n} x + \cos^{n} x} \mathrm{d}x = [x]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2}$					
	Thus $\int_{0}^{\frac{\pi}{2}} \frac{\sin^{n} x}{\sin^{n} x + \cos^{n} x} dx = \frac{\pi}{4}$ for any integral is independent of <i>n</i> and its vertex.	$\frac{\sin^{n} x}{\sin^{n} x + \cos^{n} x} dx = \frac{\pi}{4} \text{ for any } n \text{, hence the}$ Solution is independent of n and its value is $\frac{\pi}{4}$ Correct values and explanation of independence.			A1	2
				(4)		
(c)(i)	$\frac{\cos x}{1 + \cos x} = \frac{1 + \cos x - 1}{1 + \cos x} = 1 - \frac{1}{1 + \cos x}$		Splits the fraction, or if in reverse, combines the separate fractions.		M1	2
	$=1-\frac{1}{1+\left(2\cos^2\left(\frac{x}{2}\right)-1\right)}$	form	s of $\cos\left(\frac{1}{2}\right)$	double angle expression in $\left(\frac{x}{2}\right)$ (at any	B1	1
	$=1-\frac{1}{2}\sec^2\left(\frac{x}{2}\right)*$	Corr	ect result,	no errors seen.	A1*	2
Alt for (i)	$\frac{\cos x}{1+\cos x} = \frac{\left(2\cos^2\left(\frac{x}{2}\right)-1\right)}{1+\left(2\cos^2\left(\frac{x}{2}\right)-1\right)}$ $= \frac{2\cos^2\left(\frac{x}{2}\right)-1}{2\cos^2\left(\frac{x}{2}\right)} = \dots$		formula	s double angle substitution and s to simplify	M1	2
	$\cos(x) = 2\cos^2\left(\frac{x}{2}\right) - 1$ used to eliminate $\cos(x)$	Use of correct double angle formula to get expression in terms of $\cos\left(\frac{x}{2}\right)$ (at any stage)		B1	1	
	$\frac{\cos x}{1+\cos x} = 1 - \frac{1}{2}\sec^2\left(\frac{x}{2}\right) *$	Corr	ect result,	no errors seen.	A1*	2
(c)(ii)	$\int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} \mathrm{d}x = \pi \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \sin x} \mathrm{d}x$	π		result of (a)(ii)	M1	3

	$=\pi \int_{0}^{\frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{2} - x\right)}{1 + \sin\left(\frac{\pi}{2} - x\right)} dx = \pi \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \cos x} dx$ Uses the results to achieve integral in terms of cos x only.			A1 (S+)	2	
	$=\pi \int_{0}^{\frac{\pi}{2}} 1 - \frac{1}{2} \sec^2\left(\frac{x}{2}\right) dx = \pi \left[x - \tan\left(\frac{x}{2}\right)\right]_{0}^{\frac{\pi}{2}}$ Uses result from (i) and integrates correctly.			M1	3	
	$=\pi\left(\frac{\pi}{2}-1\right)=\frac{\pi^2}{2}-\pi \text{ oe}$				A1	2
					(7)	
(d)	$\int_{0}^{\pi} \frac{x \sin^{4} x}{\sin^{4} x + \cos^{4} x} dx = \int_{0}^{\pi} \frac{x \sin^{4} x}{\sin^{4} x + (1 - \sin^{2} x)^{2}} dx$ Correct integral in terms of sin only, or clear explanation that $\cos^{4} x = (1 - \sin^{2} x)^{2}$ so integral is really an integral in sinx			B1 (S+)	3	
	$= \pi \int_{0}^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx$ Applies the result of (a)(ii) to their adapted integral.			M1	3	
	$=\pi imesrac{\pi}{4}$	Applies the	e res	ult of (b)	M1	3
	$=\frac{\pi^2}{4}$	Correct result obtained.			A1	3
Alt for(d)	$\int_{0}^{\pi} \frac{x \sin^{4} x}{\sin^{4} x + \cos^{4} x} dx = \int_{0}^{\pi} \frac{(\pi - x) \sin^{4} (\pi - x)}{\sin^{4} (\pi - x) + \cos^{4} (\pi - x)} dx$ $= \int_{0}^{\pi} \frac{(\pi - x) \sin^{4} x}{\sin^{4} x + \cos^{4} x} dx$ Deduces correct integral, using $\sin(\pi - x) = \sin x$ and $\cos^{4} (\pi - x) = (-\cos x)^{4} = \cos^{4} x$			B1 (S+)	3	
	$\Rightarrow 2\int_{0}^{\pi} \frac{x\sin^4 x}{\sin^4 x + \cos^4 x} \mathrm{d}x = \pi \int_{0}^{\pi} \frac{\mathrm{s}}{\sin^4 x} \mathrm{d}x$	$\frac{\sin^4 x}{x + \cos^4 x} \mathrm{d}x$			M1	3

	$\int_{0}^{\pi} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx = \int_{0}^{\pi} \frac{\cos^4 x}{\sin^4 x + \cos^4 x} dx \text{ (as both have period } \pi \text{ so}$ equal by symmetry) hence $2\int_{0}^{\pi} \frac{\sin^4 x}{\sin^4 x + \cos^4 x} dx = [x]_{0}^{\pi} = \pi$	M1 (S+)	3
	$\Rightarrow \int_{0}^{\pi} \frac{x \sin^4 x}{\sin^4 x + \cos^4 x} \mathrm{d}x = \frac{\pi}{2} \times \frac{\pi}{2} = \frac{\pi^2}{4}$	A1	3
		(4)	
S2	 Award S2 for a fully correct solution that is succinct and includes some S+ points (see notes below). Award S1 for: a fully correct solution that is succinct but does not mention any S+ points a fully correct solution that is slightly laboured but includes and S+ point a score of >18 but solution is otherwise succinct or contains and S+ point 	(2)	2 2
		(21 + 2 marks)	
Notes:			
 (a),(b),(c),(d) S+ for a clear explanation of the symmetries of sin x and cos x used. (a) S+ for clear demonstration of the change of limits. (d) S+ for concise reasoning, developing the theme. 			

_

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom